Рефераты

Дипломная работа: Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период

Полученная выборка доходностей облигаций позволяет оценить математическое ожидание E(h(m)) и среднеквадратическое отклонение s(h(m)) распределения доходности портфеля за период m по формулам

,                                                                                             (2.3.6)

,                                                                    (2.3.7)

где xj – доля вложений в облигации выпуска j в рыночной стоимости портфеля в начальный момент времени, S – число сценариев перемещения временной структуры процентных ставок, J – число выпусков облигаций, включенных в состав портфеля.

Рис.2.3.1. Методика сценарного анализа процентного риска

портфеля государственных облигаций.

Методика сценарного анализа процентного риска, разработанная диссертантом, дает возможность ответить на ряд вопросов, имеющих как прикладное, так и теоретическое значение. Во-первых, она позволяет измерить ожидаемую доходность и риск портфелей государственных облигаций и сопоставить их с характеристиками альтернативных объектов вложений. Во-вторых, она позволяет оценить характер соотношения между доходностью и риском для различных портфелей облигаций и определить структуру эффективных портфелей, обеспечивающих наибольшую ожидаемую доходность при заданной степени риска. В-третьих, она позволяет выяснить, как изменяются значения показателей доходности и риска при увеличении срока вложений инвестора.

Эти вопросы стоят наиболее актуально на нестабильных развивающихся рынках, характеризующихся высокой изменчивостью конъюнктуры и краткосрочным характером операций большинства инвесторов. Такими признаками в полной мере обладает и российский рынок ГКО-ОФЗ. Поэтому разработанная методика сценарного анализа была использована для раскрытия закономерностей, связывающих на этом рынке структуру портфеля, срок вложений инвестора, ожидаемую доходность и степень риска.

На основе выборки временных структур процентных ставок российского рынка ГКО–ОФЗ, построенной по итогам торгов, проходившим в течение  периода с  1 сентября 2000 г. по 28 марта 2001 г., автором была произведена оценка главных компонент вектора десяти спот-ставок для сроков вложений от 0.04 до 2.82 г. Две первые главные компоненты оказались способными объяснить 95.58% суммарной дисперсии выборки, что позволило считать их достаточно репрезентативными для адекватного описания всей временной структуры процентных ставок. Процедура варимаксного вращения осей[75] позволила связать главные компоненты с динамикой краткосрочных и долгосрочных процентных ставок. Первая главная компонента, отвечающая за уровень краткосрочных процентных ставок, объясняла 47.82% суммарной дисперсии выборки, вторая, отвечающая за уровень долгосрочных ставок – 47.76%.

В рамках методики, разработанной диссертантом, построение сценариев будущих значений главных компонент временной структуры процентных ставок предполагает идентификацию моделей случайных процессов, которые определяют характер их динамики. Для этого использовался анализ автокорреляционных и частных автокорреляционных функций рядов первых разностей.

 Рис.2.3.2. Автокорреляционная функция первой разности

главной компоненты уровней краткосрочных процентных ставок.

Рис.2.3.3. Частная автокорреляционная функция первой разности

главной компоненты уровней краткосрочных процентных ставок.

Автокорреляционные функции первых разностей главных компонент временной структуры процентных ставок имеют резко выделяющиеся отрицательные значения на лаге 1. Частные автокорреляционные функции напоминают затухающие экспоненты. Поэтому динамика первых разностей главных компонент временной структуры процентных ставок описывается моделью скользящего среднего первого порядка MA(1) с положительным значением параметра q1:

Yt =  et – q1 et-1.                                                                                                               (2.3.8)

Результаты оценки параметров моделей подтвердили правильность произведенной идентификации. Все параметры оказались статистически значимыми, автокорреляция остатков не была обнаружена. Таким образом, динамика главных компонент временной структуры процентных ставок рынка ГКО–ОФЗ вполне удовлетворительно описывается моделями ARIMA(0,1,1).

Модели динамики главных компонент, оцененные автором, позволили построить сценарии будущих перемещений временной структуры процентных ставок. Сценарии строились на основе квантилей уровней 0.08, 0.24, 0.5, 0.76 и 0.92 условных распределений будущих значений главных компонент, период построения сценариев охватывал 8 недель. Таким образом, общее число сценариев оказалось равным 200. На основе значений ставок-представителей, соответствующих каждому сценарию будущих значений главных компонент, было сформировано множество сценариев перемещения временной структуры процентных ставок, которое позволило оценить ожидаемую доходность и процентный риск различных портфелей государственных облигаций.

Особый интерес представляет среднеквадратическое отклонение доходности рыночного портфеля ГКО–ОФЗ, которое отражает уровень риска на рынке в целом. В целях сопоставления изменчивости доходности операций на рынке ГКО–ОФЗ с изменчивостью доходности в других сегментах российского финансового рынка построенная выборка сценариев перемещения временной структуры процентных ставок была использована для оценки среднеквадратического отклонения доходности рыночного портфеля ГКО–ОФЗ, которая рассчитывалась по формуле

,                                                         (2.3.9)

где Vj – объем выпуска j в обращении по номиналу по состоянию на 28.03.2001.

В качестве представителей других сегментов финансового рынка нами рассматривались обменный курс доллара США к российскому рублю, а также индекс Российской торговой системы (РТС). Среднеквадратические отклонения доходностей вложений в доллар США и индекс РТС для сроков от 1 до 8 недель были рассчитаны на основе исторических выборок за период с 31.09.2000 по 28.03.2001.

Рис.2.3.4. Зависимость натурального логарифма среднеквадратического отклонения доходности от срока вложений инвестора в различных сегментах российского финансового рынка.

Как свидетельствует рис.2.3.4, уровень риска, связанного с размещением средств на рынке ГКО–ОФЗ, существенно меньше (примерно в 9.7 раза) уровня риска операций на рынке акций, но больше (примерно в 2.6 раза) уровня риска операций на валютном рынке. На всех сегментах финансового рынка наблюдается обратная зависимость между сроком вложений и среднеквадратическим отклонением рыночной доходности. Следовательно, уменьшение уровня риска портфеля государственных облигаций при увеличении срока вложений не следует связывать с сокращением разрыва между дюрацией и сроком вложений. Гораздо сильнее проявляется другой эффект, общий для всех сегментов финансового рынка и обусловленный удлинением периода начисления процентов и увеличением знаменателя формулы расчета доходности.

Методика сценарного анализа, разработанная диссертантом, позволяет получить ответ на один спорный вопрос теории процентного риска портфелей ценных бумаг с фиксированным доходом применительно к рынку ГКО–ОФЗ. Дело в том, что в литературе высказываются два прямо противоположных мнения по поводу связи между дюрацией неиммунизированного портфеля и уровнем процентного риска, которому подвержен его владелец. Как полагают Г.Бьервэг, Г.Кауфман и А.Тоевс, зависимость между дюрацией портфеля и уровнем процентного риска близка к функциональной[76]. Чем больше абсолютное значение разности между дюрацией и сроком вложений, тем больше среднеквадратическое отклонение доходности портфеля и тем больше процентный риск, которому подвергается инвестор. Напротив, Р.Даттатрейа и Ф.Фабоззи считают, что показатель дюрации не может адекватно отражать степень подверженности процентному риску владельца портфеля, поскольку он учитывает лишь малую часть спектра возможных сценариев перемещения временной структуры процентных ставок[77]. Возможность непараллельных перемещений временной структуры, не учитываемая большинством показателей дюрации, оказывает существенное воздействие на уровень процентного риска портфеля, поэтому портфели, имеющие равные дюрации, могут характеризоваться различными среднеквадратическими отклонениями распределения доходности за период вложений инвестора.

Для того, чтобы выяснить, какая из точек зрения более адекватна ситуации, сложившейся на российском рынке ГКО–ОФЗ, нужно построить область возможных комбинаций значений дюрации и среднеквадратического отклонения доходности вложений. Для этого необходимо найти наибольшие и наименьшие значения функции

,                                                                    (2.3.10)

удовлетворяющие системе ограничений

,                                                                                                          (2.3.11)

,                                                                                                                        (2.3.12)

,                                                                                                              (2.3.13)

где – дюрация Фишера–Вейла облигации выпуска j,  – целевое значение дюрации портфеля.

Рис.2.3.5. Диапазон возможных соотношений между дюрацией и среднеквадратическим отклонением доходности портфеля при сроке вложений 8 недель на рынке ГКО–ОФЗ по состоянию на 28.03.2001.

Расчеты автора показывают, что среднеквадратическое отклонение доходности неиммунизированного портфеля возрастает с увеличением разрыва между его дюрацией Фишера–Вейла и сроком вложений инвестора. Однако зависимость между дюрацией и среднеквадратическим отклонением доходности портфеля не является функциональной. Как показывает рис.2.3.5, среди портфелей с одинаковой дюрацией наблюдается достаточно существенная вариация среднеквадратического отклонения доходности вложений. Таким образом, позиция Р.Даттатрейа и Ф.Фабоззи находит подтверждение на рынке ГКО–ОФЗ.

Рис.2.3.6. Диапазон возможных соотношений между значением показателя M2 и среднеквадратическим отклонением доходности портфеля с дюрацией 1.5 г. для срока вложений 8 недель по состоянию на 28.03.2001.

Как показывает рис.2.3.6, важным фактором, определяющим разброс среднеквадратических отклонений доходностей неиммунизированных портфелей с одинаковой дюрацией, является степень рассеяния денежных поступлений вокруг даты окончания периода вложений. Чем больше значение показателя M2, тем меньше уровень процентного риска, которому подвергается инвестор.

По мнению диссертанта, это обусловлено эффектом диверсификации, проявляющимся при включении в состав портфеля денежных требований к эмитенту с короткими и длинными сроками исполнения. Поскольку значения краткосрочных и долгосрочных процентных ставок во многом определяются различными факторами, при увеличении значения показателя M2 происходит снижение коэффициента корреляции между темпами прироста рыночных оценок различных денежных требований к эмитенту, обеспечиваемых портфелем, и как следствие – падает общий уровень процентного риска.

Изучение характера взаимосвязи доходности и риска на рынке ГКО–ОФЗ предполагает построение границ области возможных комбинаций значений критериальных показателей эффективности для различных сроков вложений. Для этого необходимо найти наибольшие и наименьшие значения функции

,                                                                                             (2.3.14)

удовлетворяющие системе ограничений

,                                                            (2.3.15)

,                                                                                                                        (2.3.16)

,                                                                                                              (2.3.17)

при различных значениях срока вложений m и целевого уровня риска sG.

Таблица 2.3.1.

Структуры портфелей ГКО–ОФЗ, обеспечивающих максимум ожидаемой доходности при заданном уровне риска при сроке вложений 8 недель по состоянию на 28 марта 2001 г.

s(h(m)) E(h(m)) 21145 21147 25014 25023 25024 25030 27005 27006 27007 27009 28001
0.0497 0.1637 0.8822 0 0 0 0 0 0 0 0 0 0.1178
0.0648 0.1783 0.4755 0 0 0 0.1777 0 0.3468 0 0 0 0
0.0799 0.1872 0 0 0 0.5835 0 0 0.4165 0 0 0 0
0.0949 0.1946 0 0 0 0.1574 0 0.3968 0.4457 0 0 0 0
0.1100 0.2011 0 0.2640 0.2643 0 0 0.1130 0.3587 0 0 0 0
0.1251 0.2064 0 0 0.4247 0 0 0 0.5753 0 0 0 0
0.1401 0.2107 0 0 0.1734 0 0 0 0.8266 0 0 0 0
0.1552 0.2144 0 0 0 0 0 0 0.8566 0.1434 0 0 0
0.1703 0.2169 0 0 0 0 0 0 0.2832 0.7168 0 0 0
0.1853 0.2173 0 0 0 0 0 0 0 0 0.7462 0.2538 0
0.2004 0.2146 0 0 0 0 0 0 0 0 0 0.9386 0.0614
0.2155 0.2039 0 0 0 0 0 0 0 0 0 0 1.0000

Расчеты автора показывают, что наименьший уровень риска достигается при формировании портфеля, в котором доля краткосрочного выпуска ГКО 21145 составляет более 80%, а доля долгосрочного выпуска ОФЗ–ФД 28001 – менее 20%[78]. Максимальный уровень риска достигается при размещении всех средств инвестора в долгосрочный выпуск ОФЗ–ФД 28001. Наибольшим уровнем ожидаемой доходности характеризуются выпуски ОФЗ–ФД 27006, 27007, 27008 и 27009 со сроками до погашения от 1.82 до 2.19 г., наименьшим – выпуск ГКО 21145 и выпуски ОФЗ–ПД 25023 и 25024 со сроками до погашения от 0.34 до 0.46 г. Портфели, обеспечивающие максимум ожидаемой доходности вложений при заданном уровне риска, включают не более четырех различных выпусков. Поскольку доходности различных облигаций определяются общими факторами, потенциал диверсификации как метода управления процентным риском оказывается ограниченным.

Рис.2.3.7. Диапазоны возможных соотношений между среднеквадратическим отклонением и математическим ожиданием доходности вложений на рынке ГКО–ОФЗ по состоянию на 28.03.2001.

С увеличением срока вложений площадь критериальной области сокращается, а ее центр смещается в сторону оси ординат. Таким образом, несмотря на увеличение неопределенности по поводу будущих значений процентных ставок, которое выражается в расширении доверительных интервалов для значений главных компонент временной структуры и в увеличении размаха колебаний процентных ставок в рамках используемой выборки сценариев, удлинение периода вложений не увеличивает, а сокращает размах колебаний доходности вложений.

Увеличение срока вложений позволяет повысить эффективность инвестиционной операции. Рис.2.3.7 свидетельствует, что при заданном уровне ожидаемой доходности портфеля минимум среднеквадратического отклонения снижается с увеличением срока вложений, а при заданном уровне среднеквадратического отклонения максимум ожидаемой доходности портфеля увеличивается с увеличением срока вложений. В то же время при увеличении срока вложений снижается максимально достижимый уровень ожидаемой доходности (связанный с принятием инвестором большого процентного риска).

Проблема возможной неопределенности срока вложений инвестора игнорируется в большинстве работ по методологии управления процентным риском портфеля облигаций. Исключением является статья В.Хани[79], в которой формулируется понятие об особой форме процентного риска портфеля – риске периода вложений (holding period risk).

Как отмечает Хани, большинство портфелей облигаций выполняют функцию вторичных резервов ликвидности. Предполагаемые сроки и размеры вывода средств из портфеля определяются характером краткосрочных обязательств, для выполнения которых недостаточно текущих поступлений на расчетный счет инвестора. Однако условия финансово-хозяйственной деятельности таковы, что довольно часто фактические сроки вложений расходятся с плановыми. Возникновение дополнительных текущих потребностей в денежных средствах вызывает необходимость продажи части портфеля облигаций; напротив, непредвиденный рост денежных поступлений позволяет перенести момент закрытия позиций по облигациям на более поздний срок.

Поскольку срок вложений не является жестко заданным, возникает дополнительный фактор риска, снижающий степень определенности размера доходности портфеля. Если распределение сроков отзыва средств из портфеля поддается экспертной оценке, эту информацию необходимо использовать при формировании его структуры.

Для того, чтобы учесть фактор неопределенности срока вложений инвестора при выборе структуры оптимального портфеля, диссертант предлагает представить эту проблему в форме игры с природой, определив множество стратегий инвестора как множество вариантов формирования портфеля, а множество состояний природы – как множество возможных комбинаций периодов времени, через которые инвестору могут потребоваться денежные средства, со сценариями перемещения временной структуры процентных ставок. Тогда общее число возможных состояний природы определяется по формуле

N = (mmax – mmin) ´ FQ,                                                                                                    (2.3.18)

где mmax – максимальная продолжительность периода вложений (в неделях), mmin – минимальная продолжительность периода вложений (в неделях), F – число главных компонент, определяющих значения процентных ставок различной срочности, Q – число возможных значений главной компоненты, используемых при построении сценариев перемещения временной структуры процентных ставок.

Каждой комбинации структуры портфеля и состояния природы соответствует определенное значение доходности, которое рассчитывается по формуле

,                                                                               (2.3.19)

где hp(m,q1...qF) – доходность портфеля при сроке вложений m и реализации сценария перемещения временной структуры, описываемого значениями F главных компонент c порядковыми номерами q1...qF, xj ­– доля вложений в облигации выпуска j в рыночной стоимости портфеля, hj – доходность облигации выпуска j.

Выигрыш инвестора при реализации различных состояний природы представляет собой разность между доходностью портфеля hp(m,q1...qF) и спот-ставкой s(m), установившейся в момент его формирования. Однако изменчивость выигрыша при рассмотрении различных сроков вложений не остается постоянной. Как показали результаты сценарного анализа, выполненного диссертантом, с увеличением срока вложений среднеквадратическое отклонение доходности портфеля государственных облигаций сокращается. Поэтому в целях обеспечения сопоставимости различных периодов времени диссертант считает необходимым осуществление нормировки выигрыша на размер среднеквадратического отклонения доходности рыночного портфеля для соответствующего срока. Тогда размер выигрыша R определяется как

.                                                                             (2.3.20)

Полезность выигрыша зависит от индивидуальных особенностей инвестора. Однако большинство инвесторов испытывают отрицательное отношение к процентному риску. Для них увеличение выигрыша на заданную величину DR ведет к меньшему изменению уровня полезности, чем снижение выигрыша на ту же величину DR. Поэтому функция полезности, отражающая отрицательную склонность к риску, характеризуется  положительным значением первой производной и отрицательным значением второй производной на всей области определения, соответствующей возможным значения выигрыша.

Диссертант предлагает воспользоваться функцией полезности вида

.                                                                (2.3.21)

Функция вида f(x)=1-e-wx обладает двумя полезными свойствами, позволяющими использовать ее для моделирования отношения к процентному риску на рынке облигаций. Во-первых, она отражает неприятие риска. В самом деле,

,                                                                                         (2.3.22)

.                                                                                    (2.3.23)

Во-вторых, она позволяет учитывать различие степени неприятия риска у различных инвесторов. Чем больше значение параметра w, тем выше степень неприятия риска.

Рис.2.3.8. График функции .

Структура портфеля, обеспечивающего максимальное среднее значение уровня полезности, зависит от вероятностей отзыва средств из портфеля через различные сроки и вероятностей реализации различных сценариев перемещения временной структуры процентных ставок. Для ее определения необходимо решить задачу оптимизации

,                                 (2.3.24)

,                                                                                                                        (2.3.25)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


© 2010 Рефераты