Рефераты

Дипломная работа: Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп

Отсюда, согласно лемме 2.2.6,

Пусть . Тогда  --- цоколь группы . По лемме 3.1.2,  --- субнормальная подгруппа группы . По теореме 2.2.7, . Следовательно,  --- нормальная подгруппа группы . Тогда


По теореме 2.2.8, . Отсюда следует, что . Так как  и  --- наследственная формация, то . Получаем , т. е. . Лемма доказана.

В следующих леммах приводятся основные свойства -субнормальных подгрупп.

1.4 Лемма. Пусть  --- непустая наследственная формация. Тогда справедливы следующие утверждения:

1) если  --- подгруппа группы  и , то  --- -субнормальная (-достижимая) подгруппа группы ;

2) если  --- -субнормальная (-достижимая) подгруппа группы , то  --- -субнормальная (-достижимая) подгруппа  для любой подгруппы  группы ;

3) если  --- -субнормальная (-достижимая) подгруппа  и  --- -субнормальная (-достижимая) подгруппа группы , то  --- -субнормальная (-достижимая) подгруппа группы ;

4) если  и  --- -субнормальные (-достижимые) подгруппы группы , то  --- -субнормальная (-достижимая) подгруппа группы ;

5) если все композиционные факторы группы  принадлежат формации , то каждая субнормальная подгруппа группы  -субнормальна в ;

6) если  --- -субнормальная (-достижимая) подгруппа группы , то  -субнормальна (-достижима) в  для любых .

Доказательство. 1) Пусть  --- подгруппа группы  и . Так как  и  --- наследственная формация, то подгруппа  является -субнормальной подгруппой группы . Отсюда, согласно определению -субнормальной подгруппы, существует максимальная цепь

такая, что  для всех . Отсюда, с учетом леммы 2.2.6 получаем, что в группе  существует максимальная цепь

такая, что  для всех .

А это значит, что  --- -субнормальная подгруппа группы .

Пусть  --- подгруппа группы , содержащая , тогда  --- -субнормальная подгруппа группы . А так как любая -субнормальная подгруппа группы  является -достижимой в , то  --- -достижимая подгруппа группы .

2) Пусть  --- -субнормальная подгруппа группы . Тогда, по определению, существует максимальная цепь подгрупп

такая, что для любого  .

Пусть  --- некоторая подгруппа из . Рассмотрим цепь подгрупп

Так как  и формация  наследственна, то из  следует, что

Теперь, ввиду изоморфизма,

имеем . Значит, . Так как , то . Итак, . Отсюда, по определению,  --- -субнормальная подгруппа группы .

Пусть  --- -достижимая подгруппа группы . Тогда, по определению, существует цепь подгрупп

такая, что для любого  либо подгруппа  нормальна в , либо .

Пусть  --- некоторая подгруппа из . Рассмотрим цепь подгрупп:

Если подгруппа  нормальна в , то подгруппа  нормальна в . Пусть . Так как формация  наследственна, то из  следует, что

Теперь, ввиду изоморфизма,

имеем . Значит, . Так как , то . Итак, для каждого  либо подгруппа  нормальна в , либо . Отсюда, по определению,  --- -достижимая подгруппа группы .

Утверждение 3) следует непосредственно из определения -субнормальной (-достижимой) подгруппы.

Утверждение 4) следует теперь из утверждений 2) и 3).

5) Пусть все композиционные факторы группы  принадлежат формации , и пусть  --- субнормальная подгруппа группы . Тогда в группе  существует цепь подгрупп

такая, что для любого  подгруппа  нормальна в .

Согласно условию, , отсюда следует, что . А это значит, что подгруппа  -субнормальна в группе .

Утверждение 6) следует непосредственно из определения -субнормальной (-достижимой) подгруппы. Лемма доказана.

1.5 Лемма. Пусть  --- непустая формация,  и  --- подгруппы группы , причем  нормальна в . Тогда:

1) если  -субнормальна (-достижима) в , то  -субнормальна (-достижима) в  и  -субнормальна (-достижима) в ;

2) если , то  -субнормальна (-достижима) в  тогда и только тогда, когда  -субнормальна (-достижима) в .

Доказательство. Пусть  --- -субнормальная подгруппа группы . Тогда, по определению, существует максимальная цепь подгрупп

такая, что для любого  .

Рассмотрим следующую цепь подгрупп

Так как , то ввиду леммы 2.2.6, . Отсюда следует, что

Итак, для каждого  . Отсюда, по определению,  --- -субнормальная подгруппа группы .

Ввиду леммы 2.2.6,

Поэтому для любого  . Значит,  --- -субнормальная подгруппа группы .

Пусть  --- -достижимая подгруппа группы . Тогда, по опрeделению, существует цепь подгрупп

такая, что для любого  либо  нормальна в , либо . Рассмотрим следующую цепь подгрупп

Если подгруппа  нормальна в , то подгруппа  нормальна в . Пусть . Тогда ввиду леммы 2.2.6, . Отсюда следует, что . Итак, для каждого  либо подгруппа  нормальна в , либо . Отсюда, по определению,  --- -достижимая подгруппа группы .

Ввиду леммы 2.2.6, . Поэтому для любого  либо подгруппа  нормальна в , либо . Значит,  --- -достижимая подгруппа группы .

Утверждение 2) следует из 1) и леммы 2.2.6. Лемма доказана.

2 Критерий принадлежности факторизуемой группы классическим классам конечных групп

В работе [3] А.Ф. Васильевым была предложена задача об описании наследственных насыщенных формаций, замкнутых относительно произведения подгрупп  и , у которых любая силовская подгруппа -субнормальна в . В этой же работе было получено описание таких формаций в классе конечных разрешимых групп. Развитию данного направления были посвящены работы [4, 16].

В данном разделе найдены серии наследственных насыщенных формаций, не входящих в класс конечных разрешимых групп, обладающих отмеченным выше свойством.

В теории классов групп важную роль играет класс всех -групп ( --- некоторое множество простых чисел), который обозначается через . Большинство важнейших классов групп можно построить из классов вида  с помощью операций пересечения и произведения классов.

Напомним, что произведением классов групп  и  называется класс групп , который состоит из всех групп , таких, что в  найдется нормальная -подгруппа  с условием .

Пусть  --- множество всех натуральных чисел. Обозначим через  некоторое подмножество из . Пусть ,  --- некоторые множества простых чисел, а ,  --- классы всех -групп и -групп соответственно. В дальнейшем рассматриваем формации вида:

Напомним, что группа  называется -замкнутой ( -нильпотентной), если ее силовская -подгруппа (силовское -дополнение) нормальна в . Группа  называется -разложимой, если она одновременно -замкнута и -нильпотентна.

Через  обозначим дополнение к  во множестве всех простых чисел, если , то вместо  будем просто писать . Тогда  --- класс всех -нильпотентных групп,  --- класс всех -замкнутых групп,  --- класс всех -разложимых групп,  --- класс всех нильпотентных групп, где  пробегает все простые числа.

Группа  называется -нильпотентной ( -разложимой), если она -нильпотентна (-разложима) для любого простого числа  из . Классы всех -нильпотентных (-разложимых) групп можно записать в виде

Группа  называется -замкнутой, если она имеет нормальную -холлову подгруппу. Тогда  --- класс всех -замкнутых групп.

2.1 Лемма. Пусть  --- наследственная формация. Если  --- -субнормальная -подгруппа группы , то композиционные факторы группы  содержатся среди композиционных факторов групп из .

Доказательство. Если , то лемма верна. Пусть . Тогда  содержится в -нормальной максимальной подгруппе  группы . По индукции, . Так как , то . Отсюда, и из , получаем . Лемма доказана.

2.2 Лемма. Пусть  --- наследственная формация,  --- класс всех групп. Тогда формация  совпадает с формацией .

Доказательство леммы осуществляется непосредственной проверкой.

2.3 Теорема [10-A, 13-A]. Пусть  --- наследственная формация. Тогда всякая формация , представимая в виде , содержит любую группу , у которой  и силовские подгруппы из подгрупп  и  -субнормальны в .

Доказательство. Пусть  --- формация указанного вида и  --- такая группа, что , где  и любая силовская подгруппа из  и  -субнормальна в . Индукцией по порядку  докажем, что . Рассмотрим сначала случай, когда  --- класс всех групп.

Пусть  --- минимальная нормальная подгруппа из . Ясно, что любая силовская подгруппа из  и  имеет вид , , где  и  --- силовские подгруппы из  и  соответственно. Согласно лемме 3.1.5,  и  --- -субнормальные подгруппы фактор-группы . По индукции, . Так как  --- формация, то отсюда следует, что  имеет единственную минимальную нормальную подгруппу . Очевидно, что . Так как  --- насыщенная формация, то нетрудно показать, что .

Пусть  --- силовская подгруппа из . Покажем, что .

Пусть  --- абелева группа. Так как  --- -субнормальная подгруппа группы , то, согласно теореме 2.2.8, .

Пусть  --- неабелева группа. В этом случае  есть прямое произведение изоморфных неабелевых простых групп и .

Рассмотрим подгруппу . Согласно лемме 3.1.5,  --- -субнормальная подгруппа группы . Пусть . Так как  и  --- собственная -субнормальная подгруппа группы , то равенство  невозможно. Итак, .

Так как  и  --- насыщенная формация, то . Отсюда следует, что

А это значит, что . Если , то . Последнее равенство невозможно, так как  согласно лемме 3.1.4 --- собственная -субнормальная подгруппа .

Итак,  --- собственная подгруппа . Если , то

Так как  и  --- наследственная формация, то . Но тогда нетрудно заметить, что .

Так как , то согласно лемме 3.1.4,  --- -субнормальная подгруппа. Так как  и  --- наследственная формация, то любая силовская подгруппа  -субнормальна в . Согласно лемме 3.1.4,  --- -субнормальная подгруппа группы . По индукции, . Отсюда следует, что  для любой .

Аналогичным образом доказывается, что  для любой , где  --- любая силовская подгруппа из . Из того, что , следует .

Рассмотрим два случая:  и .

Пусть . Покажем, что .

Если  --- абелева, то  --- примарная -группа, где . Отсюда следует, что .

Если  --- неабелева, то  есть прямое произведение изоморфных неабелевых простых групп.

Так как  --- нормальная подгруппа из , то

Так как , то очевидно, что . Так как , то  для любой . Следовательно, .

Пусть теперь . Если  --- неабелева, то . Тогда . Отсюда следует, что . А это значит, что . Отсюда следует, что , где  --- любое простое число из .

Рассмотрим подгруппу , где  --- любая силовская подгруппа из .

Если , то, как и выше, получаем, что .

Если , то, как и выше, получаем, что . Отсюда следует, что , где  --- любое простое число из . Согласно лемме 2.2.9, любая силовская подгруппа  группы  есть , где  --- силовские подгруппы из  и  соответственно. Отсюда следует, что любое простое число  из  принадлежит . Следовательно, . А это значит, что .

Пусть  --- абелева группа, то . Но тогда .

Ввиду , получаем, что  для любой . А это значит, что .

Пусть теперь  --- произвольная наследственная формация и . По лемме 3.2.1, композиционные факторы группы  содержатся среди композиционных факторов групп из . Это значит, что  принадлежит .

Пусть . Так как , то ввиду леммы 3.2.2, силовские подгруппы из  и  -субнормальны в . По доказанному, . Так как , то, по лемме 3.2.2, . Теорема доказана.

2.4 Следствие (В.Н. Семенчук, Л.А. Шеметков [33]). Пусть  --- наследственная формация. Тогда всякая формация вида  является сверхрадикальной.

Доказательство. Пусть , где  и  --- -субнормальные -подгруппы группы . Так как  --- наследственная формация, то согласно лемме 3.1.4, любая силовская подгруппа из  (из ) -субнормальна в  (соответственно в ). Отсюда, согласно лемме 3.1.4, любая силовская подгруппа из  и из  -субнормальна в . Теперь требуемый результат следует из теоремы 3.2.3.

Страницы: 1, 2, 3


© 2010 Рефераты