Рефераты

Дипломная работа: Совершенствование электрификации МТФУХ "Кокино"

где IДОП - длительно допустимый ток нагрева для данного способа прокладки, числа жил и сечения провода, А.

Рабочий ток между силовым и осветительным щитом

Допустимый ток кабеля АНРГ равен 38 А [8, прил.1.19]. Следовательно, сечение выбрано правильно, так как условие (2.32) соблюдается.

Аналогично определяем токи других групп и сводим в таблицу 2.5.

Таблица 2.5 - Проверка сечения проводов по допустимому нагреву

Участок Р, кВт Марка провода IР, А IДОП, А
СО 15,95 АНРГ 24,16 38
ГРУППА 1 2,15 АПВ 3,25 24
ГРУППА 2 7,7 АВТВ 11,66 28
ГРУППА 3 5,1 АВТВ 7,73 23

2.4.3 Выбор защитной аппаратуры

Согласно ПУЭ все осветительные сети подлежат защите от токов короткого замыкания. Осветительные сети защищают воздушными автоматическими выключателями или предохранителями. Для защиты от токов короткого замыкания выбираем воздушные автоматические выключатели.

Таблица 2.6 – Результаты выбора автоматических выключателей

Участок IР, А Тип IУСТ, А IН.АВТ, А
Группа 1 3,25 АЕ 2046 10 16
Группа 2 11,66 АЕ 2046 20 25
Группа 3 7,73 АЕ 2046 12,5 20

В качестве осветительного щита выбираем щит ЩО 41-51-02.


3 Расчет электрических сетей

3.1 Расчет электрических нагрузок

Мощности электроприёмников определяем с учетом коэффициента загрузки кз по формуле:

Рр = кз* Рн (3.1)

где Рн – номинальная мощность электроприёмника, кВт.

Для определения расчётной мощности молочного блока строится график нагрузок – табл. 2.7. Поскольку максимум нагрузки длится 30 минут, за расчётную мощность принимается мощность максимума нагрузки

Ррасч = Рмакс = 133,1 кВт.

Коэффициент мощности определяется по [7] исходя из соотношения Рт / åР. Здесь Рт - суммарная мощность электронагревательных установок.

Рт /åР = 0,76; cos j = 0,96

Полная мощность электроустановок коровника на 200 голов

Sп.к = Ррасч /cosj= 133,1 / 0,96 = 138,6 кВА.(3.2)

Реактивная мощность

Q = Pptg j = 133,1× 0,29 = 38,6 квар.(3.3)

Поскольку, коэффициент мощности превышает нормируемое значение (0,92- 0,95) компенсация реактивной мощности не предусматривается.

Определение суммарных электрических нагрузок линий 0,38 кВ производится с наиболее удаленного от ТП участка. Если нагрузки потребителей отличаются менее чем в 4 раза, расчет производится по формуле:

 (3.4)

где к0 – коэффициент одновременности.

В других случаях суммирование нагрузок производится путем надбавок к большей слагаемой нагрузке:

, (3.5)

где Р(д,в)макс – наибольшая из активных нагрузок на вводе потребителя;

DР(д,в) – надбавки [6].

Средневзвешенные коэффициенты мощности и реактивной мощности расчетного участка для дневного и вечернего максимумов нагрузки, определяются из выражений:

 (3.6)

 (3.7)


где сosφi , tgφi – соответственно коэффициенты мощности и реактивной мощности потребителей расчетного участка

Таблица 3.1 – Параметры дневных и вечерних нагрузок

Наименование Дневная нагрузка Вечерняя нагрузка
Рм, кВт Qм, квар Рм, кВт Qм, квар
Коровник на 200 голов 39,58 24,5 133,1 38,6
Коровник на 200 голов 39,58 24,5 133,1 38,6
Водонапорная башня 7,5 5 7,5 5

Таблица 3.1 - Определение расчётной мощности фермы

3.3 Выбор трансформаторной подстанции

Животноводческий комплекс состоит из 2-х коровников 200 голов, молочного блока и водонапорной башни. С учетом этого трансформаторную подстанцию располагаем на расстоянии 100 м от животноводческого комплекса. Определение мощности трансформаторной подстанции производим согласно методики, приведенной в [2]. Составляем расчетную схему, приведенную на рис.3.1

Рисунок 3.1 - Расчетная схема электроснабжения: а - коровник на 200 голов; б - коровник на 200 голов; в - водонапорная башня

Полную расчетную мощность потребителя определяем по формуле

Sпр = ,(3.8)

Численные значения активной Pп и реактивной Qп мощностей принимаем из таблицы 3.1.

Sпр.б = Sпр.а == 138,6 кВА; Sпр.а == 9 кВА.

Мощность на участке линии определяем по формуле:

 (3.9)

Полная мощность участков 1-а и 1-б равная Sру.1-а = Sру.1-б 138,6 кВА.

Полная мощность участка 2-1:

Sру..2-1 == 212,8 кВА.

Полная мощность участка 3-в и мощность нагрузки «в» Sру..3-в = 9 кВА,

Мощность на шинах трансформаторной подстанции определяем как сумму мощностей участков 2-1 и 3-в

Sр.а-с = Sру..2-1 + Sру..3-в = 212,8 + 9 = 221,8 кВА.

Молочно-товарная ферма, включающая два коровника по 200 голов и молочный блок, относится ко II категории потребителей по надежности электроснабжения [8]. Выбираем подстанцию с одним трансформатором ТМ-160, 10/0.4 [9], так что он будет несколько перегружен. Правильность выбора мощности трансформатора оцениваем по условию

кз = Sр/SТ.н ≤ кз.доп = 1,5.

Получаем коэффициент загрузкикз=221,8/160=1,38≤кз.доп=1,5. Вывод, трансформатор выбран верно.

3.4 Расчет сети 0,38 кВ

Прокладку трасс линий 0,38 кВ производим согласно требованиям [11] и с учетом расположения потребителей по кратчайшему пути до потребителей и с учетом удобства её дальнейшего обслуживания. Магистральная линия выполняется четырехпроводной. Провода располагаем в следующем порядке: сверху фазные А, В, С и ниже нулевой. Для обеспечения нормального уровня надежности применяем железобетонные опоры повышенной прочности с расчетным изгибающим моментом для промежуточных опор 20 кНм и для анкерных - 50 кНм. Пролет между опорами принимается 40 м. Для крепления проводов применяем фарфоровые изоляторы типа ТФ и стальные крюки типа КН. Вводы в здание устраиваем в виде ответвления на ближайшей от здания опоре [11].

Местоположение фермы относится к первой категории по толщине стенки гололеда 5 мм, то согласно [11] принимаем расстояние между проводами 40 см, стрела провеса 1,2 м, высота ввода от земли - 3,5 м.

Электроснабжение каждого производим по отдельной линии

Выбор сечения проводов производим в зависимости от передаваемой мощности приложение 13 [14]. Результаты выбора сводим в таблицу.

Таблица 3.4 Результат выбора проводов для участков сети 0,387 кВ

Участок Smax, кВА Марка провода Погонное сопротивление
r0, Ом/км х0,Ом/км
2-1 212,8 ЗА70+А70 0,412 0,35
1-б 138,6 ЗА70+А70 0,412 0,38
1-а 138,6 ЗА70+А70 0,412 0,35
3-в 9 ЗА25+А25 1,14 0,38

Проверку сети по допустимой потере напряжения производим для наиболее удаленных потребителей - а и г по формулам [15]:

∆U = li (r0cosφ + x0sinφ)Sру/Uн и ∆U% = 100%(∆U/Uн), (3.13)

где Sру; - мощность рассчитываемого участка, кВА ;

li - длина i –го участка, км.

Линия 2 - а:

 < ∆U%доп = 5%.

Линия 3-в:

 < ∆U%доп = 5%.

3.5 Расчёт внутренних сетей и выбор аппаратуры управления

При выборе проводок необходимо руководствоваться следующими положениями. Внутренние проводки должны соответствовать условиям окружающей среды, архитектурным особенностям помещения. При выборе проводок необходимо учитывать защищенность людей от поражения электрическим током, пожаро- и взрывобезопасность, надежность, удобство эксплуатации и обслуживания.

Площадь сечения проводников выбирается по длительно допустимому току (по нагреву) для силовых сетей и по допустимой потере напряжения для осветительных сетей.

Для защиты КТП от аварий при различных режимах работы для КТП тупикового типа принимаем: со стороны низшего напряжения полупроводниковую защиту от КЗ ЗТИ – 0,4; со стороны высокого напряжения вентильный разрядник, предохранители, разъединитель, установленный на концевой опоре 10кВ и имеющий заземляющие ножи; а также защитное заземление для КТП.

На трансформаторных подстанциях мощностью до 250 кВА включительно, как правило, устанавливают автоматы серии А3700 или АЕ-2000. Данные об автоматах, устанавливаемых на 3 отходящих линиях 0,38 кВ, приведены в таблице 3.5.

Таблица 4.1 – Характеристики автоматических выключателей, устанавливаемых на отходящих линиях 0,38 кВ подстанции

№ ВЛ SТном, кВА Sрасч, кВА Iрасч, А Тип выключателя Iном, А Iном. т. расц, А Уставка Iэм.расц, А Iмакс, кА
1 160 102,4 155,8 ВА57-35-34 200 200 600 20
2 121,9 185,4 ВА57-35-34 200 250 800 25

Для проверки чувствительности и предельной отключающей способности выбранных выключателей рассчитаем токи короткого замыкания в линиях по расчетной схеме на рис. 3.2.

Рисунок 3.2 -  Расчетная схема сети 0,38 кВ ПС

Принимаем в качестве шины шинопровод ШРА73–400 с Lш=1,2 м. Параметры проводов линий ПС:

А-70: r0 = 0,42 Ом/км; х0 = 0,283 Ом/км.

Параметры трансформатора ТМ-160-10/0,4 кВ:

Активные сопротивления току трехфазного (1) и однофазного КЗ:

RТ1 = 0,045 Ом; RТ0 = 0,486 Ом.

Индуктивное сопротивление току прямой последовательности

ХТ1==0,11Ом.

Индуктивное сопротивление току нулевой последовательности

ХТ0 = 7 ХТ1 = 0,77 Ом.

Схема замещения сети 0,38 кВ представлена на рисунке 3.3.

Рисунок 3.3 - Схема замещения сети 0,38 кВ

Сопротивления прямой последовательности фазы шинопровода в сумме с активным сопротивлением болтовых соединений шинопровода с проводами линий электропередачи:

Rш1=0,15∙1,2=0,18+2∙0,006=0,192 мОм;

Хш1=0,17∙1,2=0,2 мОм.

Сопротивления нулевой последовательности фазы шинопровода

Rш0=Rш1+3∙RN=0,192+3∙0,12=0,552 мОм;

Хш0=7,5∙Хш1=7,5∙0,2=1,5 мОм.

Активное и реактивное сопротивления прямой последовательности участка 0 – 1 длиной L01 = 0,06 км:

R011=R01∙L01= 0,42∙0,06 = 0,025 Ом;

Х011=Х01∙ L01= 0,283∙0,06 = 0,017 Ом,

участка 1 – 2 длиной L12 = 0,24 км ВЛ1:

R121=R01∙L12= 0,42∙0,24 = 0,1 Ом;

Х121=Х01∙L12= 0,283∙0,24 = 0,068 Ом.

Активное и реактивное сопротивления прямой последовательности участка 0 – 3 длиной L03 = 0,18 км воздушной линии ВЛ2:

R041=R02∙L03 = 0,42∙0,18 = 0,076 Ом;

Х041=Х02∙L03= 0,283∙0,18 = 0,05 Ом,

участка 3 – 4 длиной L34 = 0,24 км ВЛ2:

R341=R02∙L34 = 0,42∙0,24 = 0,1 Ом;

Х341 =Х02∙ L34= 0,283∙0,24 = 0,068 Ом.

Для нулевой последовательности без учета нулевого провода:

участок 0 – 1 ВЛ1:

R010 = 0,84∙0,06 = 0,5 Ом;

Х010 = 0,6∙0,06 = 0,036 Ом,

участок 1 – 2 ВЛ1:

R120 = 0,84∙0,24 = 0,201 Ом;

Х120 = 0,6∙0,24 = 0,144 Ом,

участок 0 – 3 ВЛ2:

R030 = 0,84∙0,18 = 0,151 Ом;

Х030 = 0,6∙0,18 = 0,108 Ом,

участок 3 – 4 ВЛ2:

R340 = 0,84∙0,24 = 0,201 Ом;

Х340 = 0,6∙0,24 = 0,144 Ом.

Находим сопротивления прямой последовательности до точки 0

R0∑1 = RТ1 + Rш1 = 45 + 0,192 = 45,192 мОм;

Х0∑1 = ХТ1 + Хш1 = 110 + 0,2 = 110,2 мОм.

Определяем ток трехфазного КЗ в точке «0»

 = 1,943 кА.

Определяем токи трехфазного КЗ:

в точке «1»

 = 1,593 кА,

в точке «3»

 = 1,152 кА.

Сравниваем полученные значения токов КЗ с данными таблицы 4.1, видим, что все выбранные автоматические выключатели удовлетворяют условию предельной отключающей способности:

Линия 1 IМАКС = 1,6 кА < IМАКС.Q1 = 20 кА.

Линия 2 IМАКС = 1,15 кА < IМАКС.Q2 = 25 кА.

Автоматические выключатели проверяются также по условиям:

- номинальное напряжение автомата Uа.н. ≥ Uc, соблюдается всюду;

- номинальный ток теплового расцепителя IT.P.H ≥ KH·Iрасч, где Кн = 1,1…1,3 -коэффициент надежности защиты.

Условие по номинальному току теплового расцепителя соблюдается:

для Q1 155,8×1,2 = 187 А < 200 А;

для Q2 185,4×1,2 = 223 А < 250 А.

- селективности за счет мгновенной токовой отсечки электромагнитного расцепителя. Для обеспечения селективности ток срабатывания [2] IC.O = 1,25·Iрасч ≤ IЭ.P.у

должен быть меньше тока уставки электромагнитного расцепителя.

Токи срабатывания отсечек в линиях:

Iсо1 = 1,25∙155,8 = 195 А < Iэ.р.у1 = 1000 А;

Iсо2 = 1,25∙185,4 = 232 А < Iэ.р.у2 = 800 А.

- коэффициент чувствительности отсечки:

Кч = Iк(2)/IЭ.P.у ≥ 1,1

За трансформатором 160 кВА имеем токи двухфазного КЗ:

в линии 1  = 1,384 кА;

в линии 2 = 0,995 кА.

Коэффициенты чувствительности отсечек:

в линии 1Кчо1 = 1384/1000 = 1,38 > 1,1;

в линии 2Кчо4 = 995/800 = 1,24 > 1,1.

- коэффициент чувствительности теплового расцепителя:

,

где - ток дугового однофазного КЗ в наиболее удаленной точке линии, определяемый по формуле [7]:

I(1)К = Кс1∙I(1)Км,

где

I(1)Км = UHС /(Ö3× Z(1)å)

ток металлического однофазного КЗ;

Кс1 – коэффициент, зависящий от величины полного суммарного сопротивления цепи однофазного КЗ:

Z(1)å = .

Полные сопротивления однофазного КЗ до точек и коэффициенты:

«2»: Z(1)2∑ =  = 368 мОм,

Кс12 = 0,95;

«4»: Z(1)4∑ =  = 464 мОм,

Кс15 = 0,96.

Токи однофазного КЗ в точках сети и коэффициенты чувствительности защит автоматическими выключателями:

I(1)К2 = 0,95∙400/(1,73∙368) = 0,6 кА;

кч2 = 0,6/0,2 = 3 ≥ 3;

I(1)К4 = 0,96∙400/(1,73∙464) = 0, 8 кА;

кч5 = 0,8/0,2 = 4 > 3;

Таким образом, чувствительность защит принятыми автоматическими выключателями обеспечивается.

3.6 Выбор предохранителей защиты трансформатора

Защиту трансформатора 10/0,4 кВ на стороне 10 кВ, устанавливаемых на подстанции, выполняем предохранителями типа ПКТ. Номинальный ток плавкой вставки предохранителей ПКТ выбираем по условию отстройки от бросков намагничивающего тока, величина которого для трансформатора мощностью 160 кВА составляет 10,2 А. Тогда, принимаем номинальный ток плавкой вставки 16 А.

Затем проверяем выбранную плавкую вставку на селективность при аварийном отключении автоматов на стороне 0,38 кВ.

Селективность будет обеспечена, если при КЗ за автоматом последует его отключение (время срабатывания) и только после его отказа с выбранной ступенью селективности произойдет плавление вставки.

Селективность будет обеспечена, если для времени плавления вставки  выполняется условие

,

где Кп = 0,9 - коэффициент приведения каталожного времени плавления вставки к времени ее разогрева.

Полное время срабатывания автомата с учетом разброса его характеристики составляет tсз = 0,3 с, а ступень селективности примем Δt = 0,5 c. Тогда

 с.

Ток при трехфазном КЗ за трансформатором 160 кВ∙А составляет

Соответственно на стороне 10 кВ ток КЗ составит

.

По ампер -секундной характеристике плавкой вставки с Iном = 16 А при токе 74 А предохранителя ПКТ находим, что время плавления tпл = 0,4 с.

Плавкую вставку также проверяем по условию , где tк = 900/к² - допустимое время протекания тока КЗ в трансформаторе по условию термической стойкости, с;


к = Ioo/IнТ

отношение установившегося тока КЗ к номинальному току трансформатора.

При  допустимое время протекания тока КЗ в трансформаторе составит

.

Следовательно, имеем tв = 0,89 ≤ tк = 2,1 ≤ ∆t = 4 с и выбранная плавкая вставка обеспечивают защиту трансформатора.


4 Детальная разработка проекта

4.1 Использование ветроэнергоустановки

Вопросы обеспеченности энергоресурсами первостепенны для каждой страны. Существует объективный показатель — коэффициент самообеспеченности (КСО). Анализ самообеспеченности энергоресурсами в 2000 г. показал, что из бывших советских республик энергетически независимыми являются Туркменистан (КСО=3,31), Казахстан (2), Азербайджан (1,62), Россия (1,57) и Узбекистан (1,1). В настоящее время использование возобновляемых источников энергии (ВИЭ) позволяет частично и экологически безопасно решить энергетическую проблему,. Например, ветроустановка, вырабатывающая 1 млн. кВт•ч в год, предотвращает выбросы около 1000 т СО2, 6,5 т SO2, от 3 до 6 т окислов азота, 65 т золы и 400 кг пыли, которые неизбежно поступают в окружающую среду при генерации электроэнергии электростанцией, работающей на угле.

Ветроэнергетические установки (ВЭУ) уже достигли коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Автономные установки, предназначенные для энергоснабжения сравнительно мелких потребителей, могут применяться в районах с небольшими среднегодовыми скоростями ветра.

Перспективным вариантом считается применение ветроустановок в сельском хозяйстве для электроснабжения производственных процессов, а также в качестве резервного источника электроснабжения. Применение параллельной энергоустановки также позволяет снизить стоимость необходимого аккумулирующего устройства ветроустановки по сравнению с установкой работающей в автономном режиме.

Предлагаемая в проекте схема ветроустановки, работающей параллельно с энергосистемой, изображена на рисунке 4.1.

Рисунок 3.1 - Расчетная схема электроснабжения: а - коровник на 200 голов; б - коровник на 200 голов; в - водонапорная башня

Ротор синхронного генератора 1 вращается с непостоянной скоростью и вырабатывает переменную ЭДС, частота которой изменяется пропорционально снижению или возрастанию скорости ветра. Для использования электроэнергии от установки совместно с энергосистемой необходимо обеспечить получение постоянство частоты переменного тока.

Стабилизацию частоты предлагается реализовать статическим преобразователем по схеме “переменное напряжение переменной частоты – постоянное напряжение – переменное напряжение постоянной частоты”.

Вырабатываемая генератором электрическая энергия разветвляется на два контура. В первом контуре электроэнергия через выпрямитель 2 и стабилизатор 3 поступает в инвертор, где постоянное напряжение 11В преобразуется в напряжение 380/220 В с частотой 50 Гц,.

Мощность инвертора достигает единиц киловатт.

Второй контур – линия буферного накопителя электрической энергии. Она включает аккумулятор 4 и элемент сравнения 5. Контур вступает в работу в случае достаточной интенсивности ветра. При этом энергия, вырабатываемая ветроэнергетической установкой, превышает энергию, потребляемую самим инвертором, а напряжение на входе стабилизатора превышает напряжение на выходе стабилизатора. Разность напряжений приводит к срабатыванию зарядного устройства, зарядный ток которого пропорционален разности напряжений.

Уменьшение интенсивности ветра приведет к уменьшению напряжения перед стабилизатором, вследствие чего происходит уменьшение сигнала с выхода сумматора до установленного значения, что приведет к прекращению заряда аккумулятора. В этом состоянии энергия ветроустановки затрачивается только для питания потребителя через инвертор.

В случае прекращения или недостаточной скорости ветра, напряжение на выходе стабилизатора становится ниже напряжения аккумулятора, а инвертор начинает питаться от аккумулятора.

Использование электроэнергии, вырабатываемой ветроустановкой, совместно с централизованной энергосистемой возможно с помощью схемы местного автоматического включения резерва (АВР) двухстороннего действия на переменном оперативном токе. Секционный выключатель Q3 нормально отключен и включается устройством АВР при отключении выключателей ввода Q1 или Q2 или исчезновении напряжения на шинах секции I или II в результате отключения питающей линии W1 или W2. Особенность схемы АВР — при восстановлении напряжения на питающей линии автоматически восстанавливается нормальная схема подстанции.

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 Рефераты