2.2.5. Химическое никелирование
неметаллических материалов (пластмасс и неорганических диэлектриков)................................................................... 45
2.3.1. Краткие сведения о структуре и
свойствах Со—Р-покрытий......... 50
2.3.2. Условия образования, структура
и свойства Со—В-покрытий.........
2.4. Осаждение никель-фосфорных и
кобальт-фосфорных покрытий, легированных другими металлами..................................................................................... 58
Широко
распространенным способом защиты металлов от коррозии является покрытие их
слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью,
так как покрываются плотной оксидной пленкой. Покрывающий слой наносят
различными методами [1]:
·
горячее покрытие
кратковременное погружение в ванну с расплавленным металлом;
·
изготовление
биметаллических листов (железо и медь, алюминий и дюралюминий, углеродистая
сталь и нержавеющая сталь и т.п.);
·
гальваническое
покрытие – электроосаждение из водных растворов электролитов;
·
металлизация
напыление [2, 3];
·
диффузионное
покрытие – обработка порошками при повышенной температуре в специальном
барабане;
·
с помощью
газофазной реакции, например:
(в расплаве с железом).
Имеются и другие методы
нанесения металлических покрытий. Например, разновидностью диффузионного
способа является погружение изделий в расплав хлорида кальция, в котором
растворены наносимые металлы. Для изучения экстерьерного характера применяется
сусальное золочение и серебрение, наклеивание на поверхность изделия тончайших
листочков золота или серебра.
Своеобразным способом
нанесения металлических покрытий являются металлизация – распыление расплавленной
металлической проволоки струей сжатого воздуха.
В настоящее время широкое
распространение получили новые технологии нанесения
металлических покрытий за счет сверхзвукового удара частиц о поверхность
[4, 5, 6]. Ускорение частиц до сверхзвуковых скоростей осуществляется сжатым
воздухом. При этом обеспечивается нанесение металлических покрытий из
порошковых материалов (алюминиевые, медные, цинковые, никелевые, оловянные,
свинцовые, баббитовые) газодинамическим методом.
Преимущества данной
технологии: – используется только сжатый воздух и электроэнергия; – нет нагрева
и окисления металла частиц и подложки, деформаций, изменений структуры и
фазового состава металлов; – нет вредных и агрессивных газов, веществ,
излучений и других опасных факторов; – технологическая простота нанесения
покрытий, – обуславливают широкое применение данного метода [6].
В
крупномасштабном производстве для защиты металлов от коррозии, декоративной
отделки изделий, придания поверхности изделий специальных свойств наиболее
распространены покрытия, получаемые химическим или электрохимическим методами [1].
Гальванические металлопокрытия пластмасс и других диэлектриков получили широкое
распространение для защитно-декоративной отделки разнообразных изделий и для
технических целей при изготовлении различных машин и приборов (особенно
радиотехнических и электронных). Область и масштабы применения этих покрытий с
дальнейшим развитием техники постоянно увеличиваются, поскольку нанесение
металлопокрытий позволяет получать материалы с очень ценным сочетанием
физико-механических, химических и эксплуатационных свойств металла и
диэлектрика в одной и той же детали [7].
Разнообразие
современных химических методов нанесения металлических покрытий требует
целенаправленного изучения и систематизации информации, накопленной в настоящее
время, для оптимизации и дальнейшего эффективного использования, поэтому целью
данной работы стал обзор химических методов нанесения металлических покрытий.
Процесс химического
металлирования является каталитическим или автокаталитическим, а катализатором
является поверхность изделия. Используемый раствор содержит соединение
наносимого металла и восстановитель. Поскольку катализатором является
поверхность изделия, выделение металла и происходит именно на ней, а не в
объеме раствора. В настоящее время разработаны методы химического покрытия
металлических изделий никелем, кобальтом, железом, палладием, платиной, медью,
золотом, серебром, родием, рутением и некоторыми сплавами на основе этих
металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия,
формальдегид, гидразин. Естественно, что химическим никелированием можно
наносить защитное покрытие не на любой металл.
Металлические покрытия
делят на две группы:
-
коррозионностойкие;
-
протекторные.
Например,
для покрытия сплавов на основе железа в первую группу входят никель, серебро,
медь, свинец, хром. Они более электроположительны по отношению к железу, то
есть в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую
группу входят цинк, кадмий, алюминий. Они более электроотрицательны по
отношению к железу.
В повседневной жизни
человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое
железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом
белой жестью. Первое в больших количествах идет на кровли домов, а второе – на
изготовление консервных банок. Впервые способ хранения пищевых продуктов в
жестяных банках предложил повар Н.Ф. Аппер в 1810 году. И то, и другое железо
получают, главным образом, протягиванием листа железа через расплав
соответствующего металла.
Металлические покрытия
защищают железо от коррозии при сохранении сплошности. При нарушении же
покрывающего слоя коррозия изделия протекает даже более интенсивно, чем без покрытия.
Это объясняется работой гальванического элемента железо–металл. Трещины и
царапины заполняются влагой, в результате чего образуются растворы, ионные
процессы в которых облегчают протекание электрохимического процесса (коррозии).
Широко распространенный электрохимический способ имеет ряд
существенных недостатков, ограничивающих его применение. К ним относятся
неравномерность распределения покрытия на деталях сложного профиля, трудности
при нанесении покрытия на узлы, элементы которых изготовлены из различных
металлов и неметаллов Химический способ нанесения покрытий лишен указанных
недостатков наиболее распространенным способом нанесения покрытий, а также
химическому меднению, являющемуся основным процессом при металлизации пластмасс.
В последнее время практическое применение получили химическое кобальтирование и
осаждение некоторых драгоценных металлов. Существуют также многочисленные
рекомендации составов растворов для нанесения химических покрытий олова, хрома,
свинца и некоторых сплавов.
Подготовка поверхностей
перед нанесением металлопокрытий состоит в удалении окалины, жиров, оксидов и
заусенцев, облоя и других поверхностных дефектов механическими, химическими и
электрохимическими методами, а также включает активацию поверхности различными
способами. Таким образом, можно выделить следующие этапы подготовки изделия:
механическая подготовка, обезжиривание, предтравление, травление, обезвреживание
и активирование [7]. От тщательности проведения этих операций зависит качество
покрытия, и в первую очередь сцепление его с основой. Рассмотрим каждый из
этапов.
2.1.1 Механическая подготовка.
Механическая подготовка
крупных и средних деталей, осуществляемая для
получения микрошероховатости поверхности, часто заключается в мокрой или сухой
абразивной обдувке сжатым воздухом давлением 0,1 — 0,6 МПа или обработке
абразивными кругами и лентами на шлифовально-полировальных станках. Мелкие
детали массового производства галтуют с абразивом во вращающихся барабанах или
колоколах. Один из современных способов подготовки поверхности изделий
вибрационная обработка (виброгалтовка или виброполировка) – механический или
химико-механический процесс сглаживания микронеровностей и съема мельчайших
частиц с обрабатываемой поверхности частицами рабочей среды, осуществляющей в
процессе работы колебательное движение [8, 9]. Наиболее эффективна
виброхимическая обработка [10]. В последнее время в оптической и некоторых
других отраслях промышленности находит широкое применение процесс сатинирования
обработки деталей стеклянной пульпой (взвесь стеклянного порошка в воде) в
специальных автоматических установках, в результате которого получается
матовая, бархатистая поверхность [11].
Обработку
производят всухую или в жидкой среде, содержащей раствор щелочи,
кальцинированной соды или мыла. Вид обработки зависит от типа обрабатываемой
поверхности. Так, в случае диэлектриков в качестве абразива используют
кварцевый песок, наждачный порошок, электрокорунд, пемзу и другие материалы. В
условиях единичного или опытного производства для обработки применяют
шлифовальную шкурку, пемзу, абразивную пасту, стальные щетки и т.п. [7]. В
случае металлической поверхности выбирают раствор для обработки в зависимости
от типа металла по справочным данным [1].
Способ очистки деталей от
жировых загрязнений определяется их природой [12]. Жиры растительного или
животного происхождения практически не растворяются в воде, но взаимодействует
с растворами щелочей или солей щелочных металлов, образуя растворимые в воде
мыла. Жиры минерального происхождения, к которым относятся минеральные масла,
консистентные смазки, полировочные пасты и др. в воде также не растворяются.
Поэтому для их удаления используют водные растворы поверхностно-активных
веществ (ПАВ) или специальные органические растворители. Органические
растворители могут быть токсичны, а некоторые из них пожароопасны [13, 14].
После удаления основного количества жировых загрязнений и удаления следов ПАВ
или растворителя детали дочищают химическим или электрохимическим способом в
щелочных растворах. Под воздействием горячего щелочного раствора, содержащего
эмульгаторы и вещества, понижающие межфазное натяжение на границе водный
раствор-жир и водный раствор – металл, происходит разрыв жировой пленки,
уменьшение ее толщины, образование отдельных капель масла и отрыв их от поверхности
металла. При этом одновременно удаляются и мелкие механические загрязнения.
Введение в щелочные растворы поверхностно-активных веществ усиливает их
эмульгирующее действие и тем самым активно влияет на удаление жировых
загрязнений. Современные синтетические ПАВ разделяются на катионоактивные,
анионоактивные, неиногенные [15]; к катионоактивным ПАВ относятся соли
первичных, вторичных и третичных аминов, четвертичные аммониевые основания и
некоторые другие соединения. Они не обладают достаточно хорошими моющими
средствами, токсичны и применяются в промышленности ограниченно. К
катионоактивным ПАВ относится ОС-20. После обработки деталей в щелочных
растворах, содержащих ПАВ, их тщательно и щедро промывают большим количеством
воды. Труднее всего смываются растворы кальцинированной соды и едкого натра,
затем растворы силикатов и легче всего растворы фосфатов.
При выборе ПАВ необходимо
учитывать возможность его обезвреживания в сточных водах. В отличие от
биологически жестких ПАВ, выведение которых из стоков затруднено или невозможно
(алкил-сульфонаты, ОП-7, ОП-10, сульфонол, НП-1, контакт Петрова) биологически
мягкие ПАВ (например, синтанол ДС-10) хорошо поддаются обезвреживанию [12].
После предварительного обезжиривания перед гальваническими операциями детали
обычно подвергаются электрохимическому обезжириванию. Эффективность очистки
поверхности металла в этом случае определяется электрохимическими процессами
при электролизе. Процессы обезжиривания могут быть интенсифицированы
применением вибрации, перемешивания, струйной или ультразвуковой обработки [1,
11, 15, 16]. Струйная обработка особенно рекомендуется для очистки
крупногабаритных деталей. Эффективность действия ультразвукового поля основана
на явлении кавитации [12]. Однако обработка ультразвуком требует значительных
мощностей, специального оборудования и дополнительных затрат, что не всегда
экономически целесообразно. При этом достигается высокое качество очистки
поверхности от химических и механических загрязнений [11].
Используемые
при обезжиривании органические растворители можно разделить на две группы
горючие и негорючие. К первой группе относятся нефтяные фракции (нефрасы),
бензин, керосин, Уайт-спирит, толуол. Ко второй хлорированные и фторированные
углеводороды – трихлорэтилен, тетрахлорэтилен (перхлорэтилен), четыреххлористый
углерод, хладоны (в частности фреон-113 – трифтор трихлорэтан). Если применение
растворителей первой группы крайне нежелательно по причине их пожароопасности,
то растворители второй группы характеризуются еще и значительно лучшим
обезжиривающим действием. Обработка органическими растворителями реализована в
настоящее время в современном обезжиривающем оборудовании [12].
Распространен
метод одновременного обезжиривания и травления, что достигается одновременным
введением в растворы для травления ПАВ, которые эмульгируют жировые отложения
на поверхности металла [1], что экономически целесообразно, особенно при работе
на автоматических линиях [11].
2.1.3. Предтравление.
Непосредственно перед травлением в некоторых случаях выполняют
операцию предтравления, которая включает обработку поверхности диэлектрика
органическими растворителями, их смесями или эмульсиями, растворами кислот,
щелочей, солей. К предтравлению относят также термообработку, облучение,
обработку ультразвуком и другие виды воздействия. Предтравление способствует
улучшению травимости материала, что приводит к увеличению прочности сцепления
его с покрытием, равномерности ее распределения по всей поверхности, уменьшению
влияния режима переработки материала в детали. Одновременно снижаются
продолжительность (иногда в несколько раз) и (или) температура травления,
удлиняется период эксплуатации раствора. Для предтравления полимеров используют
отдельные растворители и чаще всего двух- или трехкомпонентные их смеси, в
которых хотя бы один растворяет полимер или вызывает его набухание, а другие не
взаимодействуют с ним и являются растворителями. Для металлов нет необходимости
проводить предтравление [1, 7].
2.1.4. Травление.
Является
очень важным этапом при подготовки материала к нанесению металлического
покрытия. Механизм травления зависит от типа подготавливаемой поверхности. Так, в случае
диэлектриков при травлении изменяются структура и химические свойства
поверхности. При этом ей придают требуемые шероховатость, гидрофильность и
способность к реакции при выполнении последующих операций нанесения покрытий. В
случае металлической поверхности, в зависимости от природы металла, в
результате воздействия окружающей среды, а также под влиянием различных
обработок в процессе изготовления — механической, термической и так далее,
возникают оксидные пленки. Оксидные пленки с металлической поверхности
уделяются как химическим, так и электрохимическим способами. Выбор способа и
условий травления зависит от природы обрабатываемого металла, толщины и
характера пленки, а также от типа обработки изделия до и после травления [1].
Удаляют оксидные пленки с
поверхностей металлов в растворах кислот, кислых солей, щелочей и их смесей.
Химическое травление. Химическое травление черных
металлов ведут в основном в растворах серной, соляной и ортофосфорной кислот.
Для предотвращения коррозии обрабатываемого изделия в процессе травления в травильный
раствор вводят специальные добавки – ингибиторы [17-19].
При
травлении в серной или соляной кислоте стальных изделий на их поверхности в
ряде случаев образуется шлам, нерастворимый в этих кислотах. Для удаления шлака
осуществляют травление при комнатной температуре в равнообъемной смеси серной и
соляной кислот либо в растворе, содержащем серную кислоту (30—40 г/л), хромовый
ангидрид (70—80 г/л) и хлористый натрий (2—4 г/л), или электрохимическое
обезжиривание на аноде в горячем щелочном растворе для получения светлой
поверхности на изделиях из углеродистых сталей посте травления их необходимо
последовательно обработать в растворах следующих составов: хлорное железо
160—170, соляная кислота 140—150, моющее средство «Прогресс»» 3—5 г/л или
фторид аммония 45—50 г/л, пероксид водорода (30 %-ный) 350—370 мл/л, мочевина
45—50 г/л [18].
Травление
коррозионностойких сталей проводят главным образом в смесях серной соляной,
азотной и плавиковой кислот [19]. В некоторых случаях к этим растворам
добавляют соли этих кислот, и в некоторых – с целью интенсификации – травление
проводят в ультразвуковом поле [20].
Для снятия травильного
шлама с поверхности нержавеющих сталей используются нагретые до 20-30 °С
растворы следующих составов, г/л серная кислота 15-30, хромовый ангидрид
70-120, хлорид натрия 3-5 (при τ=5-10 мин), азотная кислота 350-450
плавиковая кислота 4-5 (при τ =1-5 мин) [1, 11].
Удаления оксидных пленок
с поверхности нержавеющей и быстрорежущей стали, а также титана, можно
достигнуть, используя при температуре 370-3800С расплав едкого
натра, в которые введено 1,5-2» гидрида натрия [11].
Химическое травление
цветных металлов ведут в разных кислотах или их смесях, а в некоторых случаях и
в щелочах, например, при обработке алюминия и его сплавов [21].
Электрохимическое
травление. Электрохимический
способ позволяет снизить расход химикатов, сократить продолжительность
процесса, почти полностью исключает наводороживаине металла при травлении.
Электрохимическое травление металлов ведут преимущественно на аноде при
постоянном токе или с применением реверсирования тока
Для
электрохимической обработки некоторых металлов предложен ряд растворов [1, 11,
22].
Универсальный
электролит для электрохимической обработки тугоплавких металлов – ниобия,
хрома, титана и их сплавов имеет состав, % (по массе): плавиковая кислота 3-4,
фторид аммония 5-6, нитрат аммония 5-6 этиленгликоль 83-85, вода 8-10 [1, 23].
Таблица 1.
Электролиты и
технологические режимы электрохимического травления сталей.
Обрабатываемые
стали
Концентрация, г/л
Iа,
А/дм3
Н2SО4
HCl
HF
FeSO4·7H2O
NaCl
Углеродистые
1
200-500
2-1
20-25
5-10
Кремнистые
2
300-350
0,2-0,3
5-11
Легированные
3
80-100
10-20
4
250-300
5-10
В табл.
1 приведены наиболее распространенные составы электролитов для
электрохимического травления черных металлов [1, 18].
В ряде
случаев электрохимическое травление стальных деталей ведут, реверсируя ток, в
щелочном электролите следующего состава, г/л; едкий натр 100, триэтаноламин 20,
соотношении продолжительности катодного и анодного периодов 4: 4 Выгрузка
деталей производится в анодный период [1, 11, 18, 22].
Состав
электролита для обработки титана, % (по массе) плавиковая кислота 4-5, фторид
аммония 5-6, этиленгликоль 89, вода остальное.
Для
ниобия и его сплавов предложены электролиты, % (по массе), серная кислота 10,
плавиковая кислота 20, этиленгликоль 70; плавиковая кислота 2, фторид аммония
5-6, нитрат аммония 3-4, глицерин 78-80, вода 8-10 [24].
Последний
электролит не оказывает агрессивного воздействия на обрабатываемое изделие и
оборудование [25].
Электрохимическую
обработку кобальта проводят в электролите состава % (по массе): хлорид кобальта
25, этиленгликоль 72, вода 3 [1].
Для
травления диэлектриков наибольшее промышленное применение получили растворы
серной кислоты с сильным окислителем, в качестве которого используют прежде
всего хромовый ангидрид, реже – бихромат калия или натрия. При травлении
сополимеров стирола в этих растворах происходят окисление и удаление
полибутадиена (каучука) и внедрение сульфогруппы в поверхностный слой пластика.
При этом каркас пластика претерпевает незначительные изменения, выражающиеся в
образовании в поверхностном слое углублений шарообразной и овальной формы
глубиной от сотых до нескольких микрометров [7].
При
травлении полипропилена вытравливаются расположенные в поверхностном слое
низкомолекулярные и аморфные участки полимера. Появляющиеся при этом
микроуглубления более глубоки и удобны для зацепления с металлом, чем у
пластика АБС [23]. Поверхность большинства других диэлектриков разрушается в
процессе травления, вследствие чего создается необходимая шероховатость
(углубления, раковины, каналы и т. п.).
Хромовая
кислота вызывает и окислительную деструкцию полибутадиеновой цепи с
образованием СО2 и Н2О [7, 11].
Серная
кислота в растворах травления действует преимущественно как обезвоживающий
агент и растворитель окисленных фракций. С увеличением ее концентрации
снижается содержание хромового ангидрида в растворе (за счет уменьшения
растворимости) и возрастает разрушающее воздействие H2SO4 на каркас диэлектрика [7, 11].
При
содержании в растворе 50 -70 % серной кислоты она с большей скоростью, чем
окислитель, разрушает не только каучук, но и каркас пластмассы (в частности,
пластика АБС) [25]. В интервале 70 - 80 % наблюдается улучшение травимости,
однако поверхность быстро перетравливается, т.е. становится рыхлой, снижается
механическая прочность.
Скорость
травления возрастает с повышением температуры [7].
На
практике для травления сополимеров стирола чаще всего применяют растворы,
содержащие 20 - 40 % серной кислоты и 20 -30 % хромового ангидрида [11]. При
травлении полиолефинов, полиацеталей, поливинилхлорида и других пластмасс
используют насыщенные растворы хромового ангидрида или бихроматов в
концентрированных растворах серной кислоты [26].
Для
более мягкого действия растворов травления в них иногда добавляют ортофосфорную
кислоту, но ее присутствие затрудняет их аналитический контроль [23]. В ряде
случаев в раствор вводят и другие добавки для улучшения смачиваемости, активации
поверхности, регулирования скорости травления компонентов диэлектрика и др.
Травление поликарбоната и
полиэфиров осуществляют также и в растворах, содержащих едкий натр, а
силикатных материалов – в растворах, в состав которых входит фтористоводородная
кислота и ее соли, преимущественно кислые.
Зависимость
между составом раствора, температурой продолжительностью обработки и природой
диэлектрика довольно сложная [27]. Поэтому оптимальные состав раствора и режим
травления для конкретного диэлектрика в большинстве случаев устанавливают
экспериментально с учетом марки и способа его получения, режимов изготовления
детали, ее геометрической формы, шероховатости поверхности, продолжительности
эксплуатации раствора содержания в нем продуктов реакции, других факторов [1,
23, 24, 27, 31]
Наиболее
подходящим для травления пластика АБС-2020 является раствор, содержащий (г/л):
ангидрид хромовый СгО3.......... 370—390
кислота серная H2SO4.................. 380—400
(при
режиме обработки: температура – 63-680С продолжительность – 8-15
мин).
Для улучшения
смачиваемости пластика в раствор травления вводят 0,5-1,5 г/л препарата
«Хромин». С целью отвода продуктов реакции, обеспечения равномерности
концентрации Сr6+ и
температуры травление производят при умеренном перемешивании раствора сжатым
воздухом [26].
При обработке
труднотравимых диэлектриков иногда на их поверхность наносят промежуточное
лаковое покрытие, которое подвергают травлению [7].
Корректируют
хромовокислые растворы травления путем введения в них требуемого количества
хромового ангидрида или бихромата, растворенного в минимальном количестве воды,
и серной (или серной и ортофосфорной) кислоты [7, 28].
Способы устранения
возможных неполадок, обнаруживаемых на операции травления в хромовокислых
растворах, приведены в табл. 2.
Таблица 2
Основные
неполадки в работе хромовокислых растворов травления
Неполадки
Причина
Способ устранения
После
травления поверхность пластика блестящая, не смачивается водой
Недостаточная
продолжительность травления
Увеличить
продолжительность травления
Низкая температуры
раствора
Нагреть
раствор до требуемой температуры
Заниженное
содержание компонентов
Проверить и
откорректировать состав раствора
Накопление в
растворе более 40-50г/лСr3+ или тяжелых металлов
свыше 3г/л
Регенерировать
или заменить раствор
Повышенная
деформируемость деталей
Завышена
температура раствора
Проверить
температуру и охладить раствор
Контроль качества
травленой поверхности осуществляют визуально или под микроскопом. Оптимально
протравленная поверхность полимера остается гладкой на ощупь, теряет блеск и
приобретает незначительную равномерную матовость, хорошо смачивается водой и
обеспечивает максимальное сцепление покрытия с основой. Под микроскопом она
имеет вид губки . Среднеарифметическое отклонение микронеровностей от средней
линии Rа~1 мкм.
Для определения
микрошероховатости могут быть использованы различные микроскопы (оптические,
металлографические, растровые, электронные сканирующие), а также профилометры и
профилографы [29].
2.1.5 Обезвреживание.
Для
удаления значительного количества Сr6+, остающегося на поверхности
диэлектрика после выполнения операций улавливания и (или) промывки, производят
обезвреживание, заключающееся в обработке поверхности одним из растворов обезвреживания.
При последующем активировании в коллоидном активаторе наиболее часто используют
раствор кислоты соляной НС1 (плотность 1,19 г/см3), 150-500
мл/л. При этом промежуточные промывки между данными операциями не производят
(их выполняют перед обезвреживанием), что дает возможность стабилизировать
состав раствора активирования.
Если
промывные операции после травления не обеспечивают достаточное удаление
соединений Сr6+,
обезвреживание осуществляют в двух растворах, например, натрия пиросульфита Na2S2O5 или кислоты соляной НС1, а затем после
промывки – в растворе соляной кислоты.
Хром,
оставшийся на поверхности обрабатываемых деталей и приспособлений, способствует
снижению стабильности работы последующих растворов, особенно сенсибилизации и
химического меднения [30].
Приготовляют
составы обезвреживания путем растворения рецептурного количества компонентов в
рабочей ванне, заполненной наполовину обессоленной водой, и доведения объема до
требуемого.
Корректировать
растворы можно по данным химического анализа. Но часто эксплуатируют их до
накопления значительного количества Сr3+ (о чем свидетельствует приобретение
бесцветным раствором зеленоватой окраски), после чего заменяют свежими [1, 22].
Активирование металлических поверхностей. Непосредственно перед
осаждением покрытий на детали проводится активирование поверхности с целью
удаления тонких окисных пленок. Стальные детали выдерживают в течение 0,1-1,0
мин в 5-10%-ном растворе соляной или серной кислоты, а также в смеси,
содержащей по 30-50 г/л каждой из кислот Высококремнистые стали можно
активировать в 0,5-1,0%-ном растворе плавиковой кислоты. В случае осаждения на
детали из стали 20 медного покрытия из пирофосфатного электролита активирование
следует проводить в растворе следующего состава концентрированных кислот
(объемная доля, %): азотная - 40, фосфорная - 40, серная – 20 [1].
Особенно большое внимание необходимо обратить на активирование
хромоникелевых сталей типа 12Х18Н9Т, характеризующихся высокой пассивностью.
Перед серебрением в роданистожелезисто-синеродистом электролите можно проводить
химическое активирование в течение 20-30 мин в смеси, состоящей из 100 г/л
азотной кислоты и 30 г/л бифторида калия, с последующим катодным активированием
в растворе, содержащем 80 г/л хлористого никеля и 40 г/л соляной кислоты.
Удовлетворительные результаты дает также анодное активирование в 10-15%-ной
серной кислоте в течение 1-2 мин при плотности тока 10-15 А/дм 2.
Для подготовки к осаждению покрытий на нержавеющую сталь и никелевые сплавы,
например пермаллой, их можно активировать катодной обработкой в 15-20%-ной
соляной кислоте в течение 20-30 с при плотности тока 8-10 А/дм 2.
Представляет интерес процесс катодного активирования с
одновременным осаждением на детали тонкого слоя металла. Хорошие результаты
были получены при такой обработке деталей из углеродистой стали перед
пирофосфатным меднением. Электролит содержал 250 г/л сернокислого никеля и 50
г/л серной кислоты. Катодная плотность тока 8-10 А/дм2,
продолжительность обработки 20-30 с.
Детали из сплава 40ХНЮ перед их никелированием рекомендуется после
обычного активирования в разбавленной соляной кислоте обрабатывать в течение
1—2 мин в смеси (мл): уксусная кислота - 650, азотная кислота (концентрированная)
-300, соляная кислота – 5 и краситель метиленовый голубой - 1 г.
Для активирования поверхности деталей из меди и ее сплавов можно
использовать 0,5-1,0%-ный раствор соляной кислоты, или смесь, состоящую из
30-50 г/л соляной и 30-50 г/л серной кислоты. Наиболее положительные результаты
дает предварительная обработка в 3-6%-ном растворе цианистого калия, но ее
можно использовать лишь в тех случаях, когда в дальнейшем на детали наносят
покрытие из цианистого электролита. Активацию серебра или серебряных покрытий
перед палладированием или родированием проводят в 0,5-1,0%-ном растворе серной
кислоты. Повышение концентрации кислоты до 2-3% позволяет использовать такой
раствор для активации деталей из алюминия, изготовленных по 1-, 2-, 3-му классам
точности.
Хотя удаление тонких окисных пленок с поверхности деталей
считается обязательной и необходимой операцией, способствующей прочному
сцеплению покрытия с основным металлом, в последнее время исследования
показали, что эта цель может быть достигнута иным путем. Иногда на металле
формируются тонкие окисные пленки определенной структуры и пористости,
присутствие которых не только не ухудшает, но и повышает прочность сцепления
покрытия с основой, снижает пористость осадков. Примером эффективности такой обработки
являются процессы осаждения металлических покрытий на предварительно
оксидированный алюминий. Стальные детали перед хромированием обрабатывают на
аноде в течение 0,5—1,0 мин при плотности тока 15—20 А/дм 2,
чугунные — в течение 20—30 с. Анодирование алюминия перед осаждением на него
металлических покрытий ведут в 30%-ном растворе фосфорной кислоты при 1,0—1,5
А/дм2 в течение 5—8 мин.
Для анодной обработки стальных деталей перед осаждением на них
покрытий предложено использовать растворы следующих составов (г/л): раствор № 1
серная кислота — 700—800; раствор № 2 — серная кислота — 700—800 и
двухромовокислый калий — 20—30. Раствор № 3 приготовляется из концентрированных
серной и фосфорной кислот в соотношении 1:1 по объему начальная плотность тока
в первых двух электролитах— 10—15 А/дм2, в третьем— 15—30 А/дм 2.
По мере формирования окисной пленки ток снижается, а напряжение возрастает до
10—15 В. Когда на аноде начинается бурное выделение кислорода, процесс можно
считать законченным. При эксплуатации электролитов нельзя допускать разбавления
их водой и попадания ионов хлора, так как это приводит к разрушению
пассивирующей пленки и травлению металла.
Детали из
меди и ее сплавов перед осаждением на них покрытий из цианистых электролитов
можно обрабатывать в течение 0,5—1,0 мин на аноде при плотности тока 3—5 А/дм 2
в электролите, содержащем 30—40 г/л цианистого калия и 20—30 г/л углекислого
калия.
Активирование диэлектрических поверхностей. Процесс активирования
состоит в получении каталитически активного металла в результате взаимодействия
активатора с восстановителем адсорбированным поверхностью в растворе
сенсибилизации:
Sn2+ + Pd2+->Pd+Sn4+.
Получаемый при этом металл равномерно распределяется по всей
поверхности в виде коллоидных частиц или малорастворимых соединений. Полное
превращение таких соединений в металл часто происходит уже в растворе
химического покрытия.
Успешное проведение процесса нанесения покрытия обеспечивают
частицы палладия диаметром около 0,005 мкм в количестве 10 —15 на 1 мкм2.
Для активирования широко используют растворы, содержащие 0,01 - 5
г/л двухлористого палладия и 0,25 - 20 мл/л соляной кислоты. Они придают
поверхностям высокую каталитическую активность, стабильны в работе, применимы
для всех технологических процессов получения химических покрытий. Такие
растворы не рекомендуется использовать лишь при обработке комбинированных
поверхностей (из металла и диэлектрика), так как вследствие реакции контактного
обмена раствор быстро истощается и не обеспечивает прочности сцепления покрытия
с металлической основой.
Растворы активирования соединениями серебра находят ограниченное
применение. Они малопригодны для активирования поверхности перед химическим
никелированием, кобальтированием и другими процессами, не позволяют наносить покрытия
без перемонтажа деталей, весьма чувствительны к загрязнению хлор-ионами из
ванны сенсибилизации. В связи же с миграцией серебра по поверхности полимерных
материалов их не используют при обработкедеталей в радиоэлектронике. Применяют
соединения серебра в основном для активации поверхности пластмасс перед
химическим меднением. При этом наличие на поверхности бурой окраски, вызванной
осадком крупных частиц серебра (0,005 - 0,01 мкм), свидетельствует о качестве
активирования [16].
Рекомендуемые составы растворов приведены в табл. 4. Раствор № 1
отличается малой концентрацией и небольшим расходом соли палладия, поэтому его
использование более целесообразно, чем раствора №2. После активирования
производят промывку в непроточной обессоленной воде для улавливания
благородного металла. Затем детали промывают в проточной воде и загружают в
ванну химического покрытия.
Таблица 4
Составы (г/л) растворов и режимы активирования
Компоненты и параметры
Номер раствора
1
2
Палладий
двухлористый PdCl2
0.1-0.5
Кислота
соляная HCl (плотность 1.19г/см3)
1-10мл/л
Серебро
азотнокислое AgNO3
2-5
Аммиак водный
NH3H2O (25%-ный), мл/л
10-15
Кислотность
(оптимальная), рН
1.5-2.5
Температура, оС
18-25
18-25
Продолжительность,
мин
1-5
1-3
При применении раствора № 2 после активирования диэлектрик
обрабатывают в растворе, содержащем 50 мл/л 25 %-го раствора аммиака.
Корректируют растворы активирования по данным химического анализа
концентрированным раствором активатора.
В растворы
активирования не должны попадать ионы железа (Fe3+), так как они окисляют
металлические частицы палладия, разрушая центры катализа.
Химическое никелирование достаточно широко внедряется в
гальванотехнику благодаря ценным свойствам покрытия: высокой равномерности,
большой твердости, значительной коррозионной стойкости и износостойкости.
Химически осажденный никель обладает более высокими защитными
свойствами из-за меньшей пористости, чем электрохимически осажденный никель, а
также потому, что осадки, содержащие в своем химическом составе фосфор, более
стойки к агрессивным средам, чем чистый никель.