Рефераты

Учебное пособие: Основы радиосвязи

1) плоскости идеально проводящие, т.е. удельная электропроводность материала плоскости ;

2) диэлектрик между плоскостями идеальный, т.е. его удельная электропроводность ;

ищем решение в виде волн, распространяющихся вдоль оси z;

вдоль оси y плоскости бесконечны и электромагнитное поле вдоль этой оси не меняется;

линия возбуждается источником монохроматического поля.

При сделанных допущениях 1-е и 2-е уравнения Максвелла для комплексных амплитуд имеют следующий вид:

Раскрывая их и учитывая, что производные составляющих поля по оси y равны 0, получим 2 системы уравнений – первая относительно переменных ,,

,

; (2.1)

,

вторая - относительно переменных , ,

(2.2)

Система уравнений (2.1) описывает поля, у которых вектор напряженности магнитного поля  перпендикулярен направлению распространения z, в то время, как вектор  имеет проекцию на ось z. Такие поля называют поперечно магнитными, или поля TM – типа (Transverse Magnetic Waves). Иначе их называют полями E – типа.

Система (2.2) относится к поперечно – электрическим полям (Transverse Electrical Waves), т.е. полям ТЕ – типа (или полям H), поскольку здесь вектор напряженности электрического поля  перпендикулярен направлению распространения z - рис. 2.3. Рассмотрим структуру полей различных типов более подробно.


Подпись: Рис.2.3. Возможные типы полей в передающих линиях:
а) ТН - волны;               б) ТЕ - волны



2.2 Поперечно- магнитные волны

Из системы (2.1) исключим  и  и составим одно уравнение относительно

(2.3)

Получим уравнение эллиптического типа, для однозначного решения которого требуется задание граничных параметров [2].

Рассматриваемая линия передачи ограничена плоскостями, расположенными при следующих значениях координаты x: x = 0 и x = a.

На границе с проводником вектор  расположен таким образом, что может быть представлен суммой нормальной Eн и касательной Eкас составляющих-рис.2.4 диэлектрик.


Рис. 2.4. Электрическое поле на границе диэлектрик-проводник.

Наличие касательной составляющей электрического поля вызывает появление электрического тока плотностью

,

где  - удельная электропроводность проводника.

Поскольку плотность тока конечна, а проводимость идеального проводника, то нужно выполнение условия  при x = 0, x = a. В соответствии со вторым – уравнением системы (2.1) граничные условия для уравнения (2.3) запишем следующим образом:

, при x = 0, x = a.(2.4)

В приложении 5 получено решение уравнения (2.3) с граничными условиями (2.4). При отсутствии отражений оно может быть записано в следующем общем виде:

где - амплитуда напряженности магнитного поля прямой волны при z = 0 (m = 0, 1, 2, 3, …..),

,

.

При выполнении условия  имеем

,

где


,

или

, (2.5)

критическая частота

. (2.6)

В результате поле принимает вид бегущей волны

,

, (2.7)

,

где

.

Таким образом, в линиях передачи возможно существование бесконечного числа поперечно – магнитных волн типа Em, отличающихся числом m, которые распространяются вдоль оси z, если частота колебаний источника f > fкр.

Поперечные электромагнитные волны

Если в выражениях (2.7) и (2.6) установить m = 0, то получим поле, имеющее две взаимно перпендикулярные составляющие  и . Такое поле называется поперечно электромагнитным, или поле ТЕМ – типа (Transverse Electro-Magnetic).

ТЕМ – волны существуют при любых частотах f, т.е fкр =0 и имеют такую же структуру, как поле в свободном пространстве.

2.3 Поперечно – электрические волны

Решая уравнения системы (2.2), получим выражение для составляющих поля поперечно электрического типа (ТЕ – или H – волны):

,

, (2.8)

,

где  - амплитуда колебаний напряженности электрического поля прямой волны при z=0,

волновое сопротивление среды. Постоянная распространения определяется выражением (2.5), критическая частота fкр - формулой (2.6).

Как видно из (2.8), существует бесконечное число типов поперечно - электрических волн Hm, соответствующих разным m = 1,2,3,… При m = 0, все составляющие поля равны 0.

Так же как и поперечно – магнитные поля, H – волны распространяются вдоль оси z, если частота колебаний источника превышает критическую частоту fкр, определяемую выражением (2.6).

2.4 Фазовая и групповая скорости волн. Длина волны в линии

Фазовая скорость движения волн типа Em и Hm, т.е скорость распространения гармонических колебаний одной фазы, определяется выражением

Подставив сюда выражение (2.5) и  получим

, (2.9)

где

скорость света в среде.

Как видим, фазовая скорость ТМ - и ТЕ – волн всегда больше скорости света. Следует отметить, что фазовая скорость E – и H – волн зависит от частоты колебаний f. Зависимость  от f, называется дисперсией, а среда, в которой наблюдается дисперсия – дисперсионной. Таким образом, линии передачи, в которых распространяются поперечно – магнитные или поперечно – электрические волны являются дисперсными.

Помимо фазовой, для характеристики движения радиоволн применяют понятие групповой скорости . Групповая скорость введена для оценки движения радиосигнала.

Радиосигналом называются высокочастотные колебания, модулированные низкочастотными колебаниями, которые содержат информацию. Групповая скорость – это скорость перемещения информации. Одновременно, групповая скорость является скоростью перемещения энергии.

При движении радиосигнала имеем не монохроматическую волну, а волну, содержащую спектр частот. Если радиосигнал узкополосный, т.е. ширина спектра  много меньше средней частоты ω, то групповая скорость определяется выражением [1]:

(2.10)

Выражение (2.10) можно применить и к линиям передачи, определяя тем самым, скорость перемещения энергии.

Если в линии распространяется ТЕМ – волна, для которой, то из (2.10) следует, что

,


т.е. равна скорости света v в однородной среде.

При распространении волн Em и Hm в формулу (2.10), вместо β, следует подставить фазовый множитель βm, определяемый выражением (2.5). В результате получим

(2.11)

Как видим, групповая скорость меньше скорости света в среде v. Объединяя выражения (2.9) и (2.11), запишем

 (2.12)

Длина волны в линии

Как известно, длина волны в линии – это расстояние, проходимое волной за период колебаний T

,

где vопределяется выражением (2.9).

Если в линии распространяется ТЕМ-волна, то фазовая скорость равна скорости света в среде v. Поскольку

,

,


скорость света в вакууме, то

,

где , - относительные диэлектрическая и магнитная проницаемости диэлектрика, заполняющего линию, и длина волны в линии

,

где - длина волны в вакууме.

В случае распространения волн Em и Hm - типа

 (2.14)

Из соотношений (2.13) и (2.14) следует, что  уменьшается при заполнении линии диэлектриком или магнитным материалом, и увеличивается при возбуждении поперечно – магнитных и поперечно – электрических волн.

2.6 Затухающие электромагнитные поля

Если к линии подключен источник, генерирующий колебания, частота которых меньше критической, определяемой формулой (2.6), то система уравнений (2.1) имеет следующее решение (см. приложение 5):

(2.15)

где - зависящие от х амплитуды колебаний напряженностей поля в точке z=0

- действительное число,

Из (2.15) видно, что амплитуда колебаний, возбуждаемых в линии в точке z=0, уменьшается с ростом z, причем быстрота затухания тем больше, чем сильнее отличаются f от fкр. При любых z колебания синфазны, т.е. отсутствует движение волны.

Как следует из (2.15) колебания H(t) и E(t) происходят с фазовым сдвигом, равным 90, поэтому средний во времени вектор Пойнтинга равен 0, т.е. электромагнитное поле не переносит энергии.

2.7 Радиоволны в прямоугольном волноводе

Прямоугольный волновод (рис.2.5) - широко используемая линия передачи, обладающая наименьшими потерями энергии, по сравнению с другими типами линий.

Поперечным сечением волновода является прямоугольник, широкая сторона которого равна а, узкая-b.

Для нахождения электромагнитного поля внутри волновода следует решить уравнения Максвелла с граничными условиями

где - касательная составляющая напряженности электрического поля. Проведя преобразования, аналогичные тем, которые были проделаны при нахождении поля между параллельными плоскостями, найдем выражения для составляющих поля в волноводе. Здесь также имеются две группы полей:

- поперечно-электрические или ТЕ-типа (Н-тип),

- поперечно-магнитные или ТМ-типа (Е-тип).

Поле Н-типа имеют составляющие Ех, Еу, Нх, Ну, Нz, а поле Е-типа – Ех, Еу, Еz, Нх, Ну.

Радиоволны Н-типа

Поперечно-электрические поля имеют следующие составляющие:

(2.16)

(2.17)

Как видим, поле имеет вид бегущей волны при , где

(2.18)

В волноводе может распространяться бесконечное число волн Hmn, соответствующих разным значениям m и n. Для того чтобы расширить диапазон пропускаемых частот, следует, по возможности, уменьшить критическую частоту . С этой целью следует возбуждать волны, у которых m и n минимальны.

Как следует из выражений для составляющих поля, не существует волны Н00. Простейшими типами колебаний являются Н10 и Н01. Так как a>b, то из (2.18) следует, что наименьшая критическая частота у волн Н10. Именно она, главным образом, используется на практике.

Волна Н10

Подставим в (2.16) m=1, n=0, получим

где -постоянная распространения волн Н10, определяемая выражением (2.16), а критическая частота

Поскольку

,

где -критическая длина волны в диэлектрике, заполняющем волновод, то

.

Длина волны в волноводе определяется соотношением (2.14), справедливым для волн Н- и Е-типа.

На рис.2.6 приведено распределение линий напряженности Е и Н в случае возбуждения волн Н10.

2.8 Волны ТЕМ-типа

Подпись:

Как было отмечено в разделе 2.3, поперечные электромагнитные поля (ТЕМ-типа) существуют в линии при любых частотах колебаний, в том числе при , т.е. при протекании постоянного тока. Поэтому ТЕМ-волны могут распространяться в тех линиях, которые пропускают постоянный ток. Среди представленных на рис.2.1 это - двухпроводные, коаксиальные и микрополосковые линии.


На рис.2.7 изображены распределения электрических и магнитных линий в линиях с ТЕМ-волнами, справедливые для некоторого момента времени.

Помимо главной особенности таких ТЕМ-волн - отсутствие граничной частоты, эти волны имеют следующие свойства.

Фазовая скорость не зависит от частоты колебаний и равна скорости света в среде

где с- скорость света в вакууме. Для немагнитных сред (где )

(2.19)

В микрополосковой линии среда неоднородна по сечению, поэтому в (2.19) нужно подставить некоторую эффективную относительную диэлектрическую проницаемость , которая заключена в пределах ,где - относительная диэлектрическая проницаемость подложки. Значение  для микрополосковых линий можно найти, например в работе .

Длина волны в линии не зависит от частоты колебаний f:

где - длина волны в вакууме. Для линий с немагнитным заполнением


(2.20)

Поскольку структура поля в линии такая же. как и при протекании постоянного тока, а статическое электрическое поле потенциально, то и для переменных полей можно использовать понятие потенциала . Это дает возможность перехода при расчете поля от дифференциальной векторной величины  к интегральной скалярной величине, где U – разность потенциалов, или напряжение. В результате, вместо расчёта трех проекций вектора , зависящих от 4-х переменных, достаточно найти одну величину U как функцию 2-х переменных. Это значительно упрощает расчёт.

Вектор плотности тока  в линиях с ТЕМ-волной имеет составляющую, направленную вдоль оси распространения (оси х). Поэтому, вместо дифференциальной векторной величины , можно перейти к интегральной скалярной величине – току I(t,x).

2.9 Телеграфные уравнения

Получим соотношение между напряжением U и током I в линии передачи с ТЕМ-волной, которые позволят анализировать распространение электромагнитной волны в линии, не решая уравнения Максвелла. С этой целью рассмотрим небольшой отрезок коаксиальной линии длинной (рис.2.8).

Полагаем, что потенциал в сечении А равен φ, а в сечении В φ2. Линию считаем не имеющей потерь, обладающей погонной индуктивностью L1 и погонной емкостью С1 (L1, C1-это соответственно индуктивность и емкость линии длиною 1м).

Воспользуемся интегральной записью II уравнения Максвелла

где магнитный поток представим в виде

(2.21)

L - индуктивность отрезка линии длиной

(2.22)

Контур интегрирования 1-2-3-4 изображён на рис.2.8. Итак, с учётом (2.21)

Поскольку скалярное произведение векторов =, где -угол между векторами , то

Учитывая связь напряженности электрического поля Е с потенциалом φ, запишем

В результате, принимая во внимание (2.22), получим

или, обозначив

φ2-φ1=

В пределе при  окончательно запишем

(2.23)

Переход от  к .

Воспользуемся определением силы тока

(2.24)


где q-заряд,

q=CU, C=C1.

Связь сила тока I с плотностью тока  определяется следующим соотношением

(2.25)

Выберем в качестве поверхности интегрирования цилиндрическую поверхность, охватывающую внутренний проводник коаксиальной линии (рис.2.9)

Тогда  (интеграл по боковой поверхности равен 0).

Из (2.21) получаем


Окончательно при переходе к пределу при z имеем

(2.26)

Уравнения (2.23) и (2.26) называют телеграфными. Их решение дает возможность найти ток I и напряжение U как функции времени и координаты Х.

2.10 Решение телеграфных уравнений.

Продифференцировав уравнения (2.23) по координате, а уравнение (2.26) по времени и исключив ток I, получим волновое уравнение для напряжения U:

(2.27)

Будем полагать для простоты, что к линии подводятся колебания одной частоты . Тогда решение выражения (2.27) может быть записано в виде монохроматических волн

(2.28)

где первое слагаемое представляет собой волну, бегущую по линии в положительном направлении оси Х, её называют падающей. Второе слагаемое описывает отражённую волну, распространяющуюся в отрицательном направлении оси Х.

В решении (2.28) - комплексные амплитуды падающей и отраженной волн, - постоянная распространения


-скорость волны в линии

Волновое уравнение может быть записано и для тока

его решение имеет вид

Как было отмечено в разделе 1.7, монохроматические волны удобно представлять в виде комплексных амплитуд

Связь между  и  можно получить, подставив в первое телеграфное уравнение (2.23) мгновенные значения напряжения и тока в линии.

В результате будем иметь

(2.29)

- волновое сопротивление линии.

Аналогично можно найти связь  с :

(2.30)

2.11 Режимы работы линий передачи

Допустим к входу линии передачи длиною  подключен источник гармонического напряжения частотой , амплитудой , а в конце линии имеется нагрузка сопротивлением zн (рис.2.9).

Режим бегущей волны

Если в линии отсутствует отраженная волна, то имеем режим бегущей волны

Как видим, в любом сечении z линии передачи имеются колебания напряжения U(t) с одинаковой амплитудой Uпад и колебания тока I(t) с не изменяющейся амплитудой Iпад

Мгновенная фаза колебаний

зависит от координаты.

Особенностью режима бегущей волны является постоянство сопротивления линии при любых х:

Получим выражение для средней по времени мощности колебаний в режиме бегущей волны:

(2.31)

Мгновенные значения напряжения и тока в линии

Подставив эти выражения в (2.31), получим

.


Режим стоячих волн.

Допустим, в линии имеется отраженная волна, амплитуда которой равна амплитуде падающей волны

В этом случае напряжение в линии

После некоторых преобразований получим

(2.32)

Как видим, в этом случае колебания напряжения в линии происходят синфазно, независимо от координаты х. Амплитуда колебаний изменяется вдоль линии по закону косинуса (рис.2.10)

где - длина волны в линии.

Можно получить аналогичные выражения для тока в линии

или

 (2.33)

Амплитуда колебаний тока также меняется в зависимости от х (рис.2.10).

Распределение амплитуд U и I о линии изображено на рис. 2.10

Нетрудно заметить, что имеются ечения в линии, где амплитуда колебаний максимальна, она в 2 раз больше амплитуды источника. Эти сечения называются пучностями. В других сечениях колебания отсутствуют, это - узлы. Пучности (а также узлы) отстают друг от друга на расстояние , равное , где -длина волны в линии.

Получим выражение для средней мощности колебаний в линии. С этой целью подставим в (2.31) выражения (2.32) и (2.33), в результате имеем Рср=0. Итак, в режиме стоячих волн энергия вдоль линии не передается. Таким образом, режим стоячих волн для передачи радиоволн не пригоден. Этот режим применяют в резонаторах. Режим смешанных волн.

На практике в линии всегда присутствует отраженная волна, причем амплитуда отраженной волны Uотр меньше амплитуды падающей Uпад. Допустим, что Uотр = , т.е. фаза напряжения отраженной волны φотр=0. Комплексная амплитуда напряжения в линии

.

Распределение амплитуды напряжений вдоль линии показано на рис.2.11.

В некоторых сечениях линии (пучностях) имеется усиливающая интерференция, падающая и отраженные волны складываются в фазе и амплитуда колебаний напряжения максимальна . В других сечениях (узлах) - гасящая интерференция, волны складываются в противофазе. Здесь амплитуда напряжений минимальна .


2.12 Коэффициент стоячей волны напряжения

Коэффициент отражения.

Для характеристики режима работы линии используют коэффициент стоячей волны напряжения , который определяется так

(2.34)

Поскольку

, , то

(2.35)

Коэффициент отражения.

Другим коэффициентом, применяемым для оценки режима работы линии, является коэффициент отражения напряжения от нагрузки :

Так как при

x=

(2.36)

где

- модуль коэффициента отражения;

- фаза коэффициента отражения.

Связь kсв c Г.

Из (2.35) и (2.36) следует, что

.(2.37)

Отсюда

Из (2.36) следует, что модуль коэффициента отражения может находиться в пределах

0<Г<1,

а согласно (2.37), пределы изменения коэффициента стоячей волны


2.13 Передача энергии в нагрузку

В режиме смешанных волн мощность электромагнитных колебаний, поступающая в нагрузку

где - мощность колебаний, создаваемых падающей волной; - мощность колебаний отраженной волны, причем

где - проводимость нагрузки.

Отсюда

,

или

(2.38)

Таким образом, мощность электромагнитных колебаний, передаваемых по линии от источника к нагрузке, в значительной мере зависит от модуля коэффициента отражения Г.

Максимальная мощность, передаваемая в нагрузку.

В любой линии передачи существует максимально допустимая амплитуда колебаний . Допустим, что в предельном случае выполняется условие  где

максимальная амплитуда колебаний в линии, т.е амплитуда в пучностях.

В этом случае

и мощность колебаний падающей волны

Подставив это выражение в (2.38), получим с учетом (2.37)

(2.39)

Из (2.39) следует, что при заданной амплитуде  для максимальной передачи мощности в нагрузку следует уменьшать , т.е. стремится к установлению режима бегущих волн.


2.17 Условия существования режима бегущих волн

Как было отмечено в разделе 2.13, для наиболее эффективной передачи энергии электромагнитных колебаний по линии от источника к нагрузке следует устанавливать режим бегущих волн. Получим условие его существования.

В конце линии при  сопротивление нагрузки

где

Учитывая (2.27) и (2.28), запишем

или, поделив числитель и знаменатель на  и принимая во внимание выражение (2.36), получим

отсюда

(2.40)

В режиме бегущих волн коэффициент отражения напряжения . Таким образом, получаем следующие условия для существования режима бегущих волн: (2.41) или где - волновое сопротивление линии,

Для того, чтобы в линии передачи существовал режим бегущих волн, требуется, чтобы нагрузка была чисто активная и сопротивление нагрузки равнялось волновому сопротивлению линии.

Волновое сопротивление зависит от погонных параметров линии , которые определяются размерами линии и её заполнением. В большинстве радиотехнических устройств применяются коаксиальные и микрополосковые линии со стандартным волновым сопротивлением Ом или Ом. Такие значения сначала были выбраны для коаксиальных линий из условия минимума потерь в линии и максимума передаваемой мощности (см. Приложение 6). Поскольку в микроэлектронных радиосистемах коаксиальные линии сопрягаются с микрополосковыми, такой же стандарт был выбран и для микрополосковых линий.

В заключение отметим, при таком условии амплитуды колебаний напряжения и тока не зависят от того, в каком сечении в линии они определены. Изменения амплитуд объясняется сложением колебаний, распространяющихся вдоль оси Х и обратно, мгновенная фаза которых зависит от координаты. Из-за этой зависимости возникают пучности, где разница фаз падающей и отраженной волн равна 0 и узлы, где разность фаз составляет  радиан. Для того, чтобы устранить эту зависимость, нужно выполнить условие или

где -длина волны в линии.

Таким образом, линии передачи и любые электронные каскады радиосистем, размеры которых значительно меньше длины волны, можем считать устройствами с сосредоточенными параметрами. Зависимость физических величин и параметров от координат в них не проявляется.


3. Излучение и распространение радиоволн

Электромагнитные волны излучаются в пространстве передающими антеннами, на которые поступают колебания по фидеру от источника. В антеннах происходит преобразования типа колебаний, существующего в фидере, в ТЕМ – волны, распространяющиеся в свободном пространстве.

3.1 Диполь Герца

Электромагнитное поле создается генератором, от которого колебания E(t) и H(t) по фидерному тракту поступают в излучатель антенны – рис. 3.1.


Антенна – это устройство, которое служит для излучения и приема электромагнитных колебаний. Существует огромное количество типов антенн. Все они взаимны, т.е. одновременно могут излучать и принимать. Изучение антенн начнем с самых простых.

Простейшим излучателем является диполь Герца, представляющий собой металлический стержень, в разрыв которого поступают колебания от генератора Iг(t) , а на концах имеются шары.


При периодическом изменении тока генератора в диполе протекает переменный ток плотностью j(t) , а на шарах накапливается переменный заряд q(t). Диполь Герца излучает электромагнитные колебания по следующим причинам:

в соответствии с 1 – м и 3 – м уравнениями Максвелла под действием переменных j(t) и ρ(t) в пространстве около диполя возникают переменные магнитное H(t) и электрическое E(t) поля;

в согласии с 1-м и 2-м уравнениями Максвелла вокруг силовых линий  возникает магнитное поле , а вокруг силовых линий  возникает поле ; далее процесс повторяется, в результате чего образуется электромагнитная волна, распространяющаяся в пространстве.

Для того, чтобы определить характеристики излучения диполя Герца, решим уравнения Максвелла при следующих допущениях:

плотность тока проводимости вибратора jпр(t) одинакова в любой точке сечения стержня, т.е. ток равномерно распределен по сечению площадью S, отсюда

;

ток генератора изменяется во времени по гармоническому закону


,

где  - амплитуда, ω – циклическая частота колебаний.

Уравнения Максвелла целесообразно решать в сферической системе координат, где координатами являются: r - расстояние от начала координат до точки наблюдения, θ - угол места, φ - азимутальный угол – рис.3.3


Векторы  и  в сферической системе могут быть записаны следующим образом:

;

;

где , ,  - векторы единичной длины, направленые по касательной к координатным линиям; Er, Eθ, Eφ, Hr, Hθ, Hφ – проекции векторов  и  на направления r, θ, φ.

Координатная линия – это линия пересечения двух координатных поверхностей. Координатные поверхности – поверхности одинаковых значений r, θ, φ. Координатной поверхностью r = const является сфера, θ = const - поверхность конуса, φ = const - плоскость.

Координатная линия r - прямая, образованная пересечениями конической поверхности θ = const и плоскости φ = const , координатная линия θ - окружность, образованная пересечением сферы r = const и плоскости φ = const , линия φ - окружность, образованная пересечением сферы r = const и поверхности косинуса θ = const . На рис. 3.3 показаны направления векторов , и .

При расположении диполя Герца, показанном на рис. 3.3, составляющие поля не зависят от азимутального угла φ . Решение уравнений Максвелла при известной длине диполя l , амплитуде тока генератора Im, параметрах пространства ε и μ, при условии отсутствия потерь энергии имеет следующий вид [1]:

,

,(3.1)

,

где

 - волновое сопротивление пространства,

- фазовый множитель.

Как видим, из шести проекций векторов  и  в решении оказалось только три.

3.2 Ближняя и дальняя зоны излучателя

Анализ полученных соотношений для проекций векторов показывает, что характер электромагнитного поля антенны существенно зависит от сомножителя . Произведение βr можно записать в виде

.

Ближняя зона

В точках пространства, расположенных вблизи излучателя, там, где выполняется соотношение

можно считать, что . Кроме того, можно еще более упростить выражение для комплексных амплитуд ,  и , пренебрегая в скобках слагаемыми высших порядков малости. Итак, для  комплексные амплитуды

,

,


.

Мгновенные значения проекций векторов напряженности  и  могут быть записаны в следующем виде:

,

,

,

где

- амплитуда колебаний напряженности магнитного поля.


Подпись: Рис.3.4 Проекции векторов   и   в ближней зоне

Расположение проекций векторов  и  в пространстве показано на рис.3.4

Суммарный вектор  перпендикулярен вектору  и колебания  и  сдвинуты во времени на 90o.

Мгновенный вектор Пойнтинга в ближней зоне

Как видим, плотность потока мощности электромагнитного поля в ближней зоне излучателя колеблется около нулевого значения, уходя от антенны и возвращаясь обратно. Среднее во времени значение вектора Пойнтинга

.

Итак, в ближней зоне излучения энергии нет.

Особенности ближней зоны

1.Электромагнитная волна не распространяется в пространстве, а колеблется около антенны, причем амплитуды колебаний напряженностей  и  быстро падают с ростом расстояния r: Hm Em - падает обратно пропорционально r2, а Em – обратно пропорционально r3;

2.Колебания H(t) и E(t) имеет постоянный фазовый сдвиг, равный 90o, в результате чего средняя во времени плотность мощности электромагнитных колебаний равно 0; антенна в ближней зоне эквивалентна реактивному элементу электрической цели (емкости или индуктивности), у которого, как известно, ток и напряжение колеблются в квадратуре.

Ближнюю зону иначе называют зоной индукции.

Дальняя зона

При достаточно больших расстояниях от антенны, где  () не учитывать сомножитель в выражениях для ,  и  нельзя. Пренебрегая малыми членами в скобках выражений (2.1), получим

,

,

.

Мгновенные значения напряженностей H и E:

,

,(3.2)

где

,

 – амплитуды колебаний напряженностей поля.

Как видим, векторы  и  перпендикулярны в пространстве и их значения колеблются синфазно во времени. Из (3.2) следует, что выражения для H и E представляют собой волны, бегущие вдоль оси r.

Среднее значение вектора Пойнтинга в дальней зоне

(3.3)

В радиосистемах прием электромагнитных колебаний происходит на расстояниях, существенно больших длины волны, т.е. в дальней зоне.

Особенности дальней зоны

1.Напряженности H и E колеблются синфазно, их амплитуды уменьшаются обратно пропорционально расстоянию r;

2.Плотность мощность электромагнитного поля определяется квадратом амплитуды тока генератора Im, растет с увеличением отношения длины вибратора l к длине излучаемой волны λ и падает обратно пропорционально квадрату расстояния;

4.Излучаемая мощность зависит от угла места θ и максимальна в направлении, перпендикулярном оси вибратора.

Из выражения (2.3) следует, что для эффективного излучения геометрические размеры антенны должны быть соизмеримы с длиной волны. Этот вывод справедлив для всех антенн.

3.3 Диаграмма направленности антенны

Как видно из (3.1) и (3.3), комплексные амплитуды и плотность мощности электромагнитного поля, излучаемого диполем Герца, зависят от угла места θ. Для других антенн эти величины зависят и от азимутального угла φ В общем случае от θ и φ зависят амплитуды и фазы  и . Поскольку H и E жестко связаны, обычно используют зависимость .

Зависимость амплитуды напряженности электрического поля E в дальней зоне от углов места θ и азимута φ при постоянном расстоянии r называется амплитудной диаграммой направленности. Зависимость фазы комплексной амплитуды  от θ и φ называется фазовой диаграммой направленности.

Зависимость E от θ для диполя Герца определяется множителем sinθ, поэтому диаграмма направленности имеет вид баранки (тороид вращения) – рис. 3.5


Подпись: Рис.3.5 Диаграмма направленности диполя Герца

Диаграмму направленности изображают в полярных или декартовых координатах в 2-х плоскостях:

- в плоскости φ = const – рис. 3.6, а;

- в плоскости θ = const - рис. 3.6, б.



Подпись: Рис.3.6 Диаграмма направленности диполя Герца в 2–х плоскостях

3.4 Излучение рамочной антенны

Другим простейшим излучателем является круглая проволочная рамка радиуса a, по которой протекает переменный ток I(t). Допустим, ток меняется во времени по гармоническому закону, т.е.

.

Если рамка расположена в горизонтальной плоскости, как показано на рис. 3.7, то решение уравнения Максвелла дает существование 3-х проекций векторов напряженностей поля: ,  и . Значения комплексных амплитуд соответствуют выражениям (3.1) для,,, полученным для диполя Герца, причем

= -,

=,

=.

В дальней зоне векторы  , и  ориентированы в пространстве так, как показано на рис. 3.7

Подпись: Рис.3.7 Ориентация векторов   ,  и   для рамочной антенны

Максимум излучения оказывается в горизонтальной плоскости, т.е. в плоскости рамки. Таким образом, диаграмма направленности рамочной антенны такая же, как и у диполя Герца, только векторы  ипоменялись местами.

3.5 Излучение плоскости

Предположим, что имеется плоская поверхность в виде прямоугольника со сторонами a и b, по которой равномерно распределены векторы  и, как показано на рис.3.8.

Подпись: Рис.3.8 Излучающая плоскость

Нормированная диаграмма направленности такого излучающего элемента в двух взаимно перпендикулярны плоскостях при φ = 0 и φ = π/2 имеет следующий вид []:

,(3.4)

где

отношение амплитуды напряженности электрического поля к максимальной амплитуде, соответствующей углу места θ = 0; l = a для плоскости φ = 0 (т.е.x0z) и l = b для плоскости φ = π/2 (т.е.y0z ). Графики функции , построенные для 2-х значений , приведены на рис. 3.9

Подпись: Рис.3.9 Нормированные диаграммы направленности изучающей плоскости:&#13;&#10;а) соответствует &#966; = 0,  ;&#13;&#10;б) соответствует &#966; = &#960;/2  ,  .&#13;&#10;

Как видим, диаграмма направленности имеет вид лепестка, причем максимум излучения направлен перпендикулярно излучающей плоскости. Если размер плоскости увеличен, то главный лепесток сужается и появляются боковые лепестки, создающие излучения в других направлениях.

Появление максимумов и минимумов в диаграмме направленности объясняется усиливающей и ослабляющей интерференцией полей, созданных отдельными участками излучающей поверхности. Ширину главного лепестка оценивают величиной 2θ0, где θ0 - минимальный угол, при котором , либо величиной 2θ-3дБ, где θ-3дБ - угол, при котором  падает на 3 дБ по сравнению с максимальный значением.

Из (3.4) и рис.3.9 следует, что для создания узконаправленных диаграмм нужно увеличивать линейные размеры антенны l с тем, чтобы выполнялось соотношение l>>λ.

3.6 Типы антенн

Существуют передающие антенны, предназначенные для излучения радиоволн, и приемные антенны, служащие для их приема. Антенны – устройства взаимные, их можно использовать и для излучения, и для приема.

Имеется огромное количество типов антенн, различающихся диапазонами рабочих частот и диаграммами направленности. При проектировании антенн задаются следующие параметры:

полоса частот;

вид диаграммы направленности и поляризация излучаемых (или принимаемых) радиоволн;

минимальные потери энергии в антенне;

входное сопротивление и максимальный Kсв в фидере;

минимальный шум (для приемных антенн).

Антенны классифицируются по различным признакам: частоте, виду диаграммы направленности, конструкции. В зависимости от конструкции, существуют следующие типы антенн:

Линейные;

Апертурные;

Антенные решетки.

Линейные антенны

Особенностью линейных антенн является то, что поперечные их размеры малы по сравнению с продольными. К линейным относятся проволочные и щелевые антенны – рис. 3.10.

Г- и Т-образные антенны выполнены из проводника узкого сечения и применяются на низких частотах. Вибраторные щелевые и полосковые антенны применяют в разных частотных диапазонах, в том числе и на СВЧ. Линейные антенны создают, обычно, слабонаправленное излучение.

Апертурные антенны.

В апертурных антеннах излучение происходит в некоторой плоскости, называемой апертурой, или раскрывом. К этому типу антенн относятся рупорные, зеркальные и линзовые антенны (рис.3.11).

Простейшей апертурной антенной является волноводный рупор (рис.3.11а). Распространенным типом рассматриваемого вида являются зеркальные антенны, представляющие собой параболоид вращения, облучаемый, например, рупором (рис.3.11б). К апертурным относятся и линзовые антенны, выполненные из высококачественного диэлектрика (рис.3.11в).

Размеры апертуры обычно значительно больше длины волны, в результате имеется возможность создания остронаправленных лучей.

Антенные решётки.

Антенной решёткой называется совокупность ряда излучателей, расположенных на некоторой поверхности. В простейшем случае - это линейка излучателей (рис.3.12а)

Антенные решетки позволяют сужать диаграмму направленности. Если на пути электромагнитной волны поставить управляемый фазовращатель, то появляется возможность изменять направление излучения, создавать многолучевую диаграмму направленности или излучение специальной формы.

Решетки с возможностью управления фазой колебаний, излучаемых отдельном элементом, называют фазированными антенными решетками (ФАР) (рис.3.13)

Для уменьшения мощности источника колебаний, питающего решетку, увеличения надежности передающей системы последовательно с фазовращателями включают усилители мощности (УМ) (рис.3.14). Такие антенны называют активными фазированными антенными решетками (АФАР).


3.7 Основные параметры антенн

Для характеристики антенн используют следующие параметры:

1) ширина луча,;

2) уровень боковых лепестков, , дБ;

3) коэффициент направленного действия, D;

4) коэффициент полезного действия, ;

5) коэффициент усиления, G;

6) действующая площадь приемной антенны, Sпр;

7) шумовая температура приемной антенны, .

Ширина луча и уровень боковых лепестков.

Первые два параметра определяются по диаграмме направленности (рис.3.15). Ширина луча - это угол, в пределах которого напряженность электрического поля не падает ниже –3дБ относительно максимального значения (рис.3.15а).

Уровень боковых лепестков оценивается величиной

, дБ,

или

, дБ,

где - мощность и напряженность электрического поля наибольшего бокового лепестка; - мощность и напряженность в направлении максимума диаграммы направленности (рис.3.15).

Коэффициент направленного действия антенны.

Для оценки степени концентрации энергии электромагнитного поля в определённом направлении применяется параметр

,

называемый коэффициентом направленного действия антенны; - мощность, излучаемая ненаправленной антенной; - мощность направленной антенны при одной и той же амплитуде напряженности электрического поля в приемной антенне (рис.3.16).

Коэффициент полезного действия антенны η.

Этот коэффициент показывает, какая часть мощности электромагнитных колебаний, поступающих в антенну из передатчика, излучается в пространство

где - мощность, излучаемая направленной антенной; - мощность передатчика.

Коэффициент усиления антенны.

показывает, во сколько раз мощность колебаний, излучаемых ненаправленной антенной больше мощности поступающей от передатчика в реальную (направленную) антенну при одной и той же амплитуде  в приемной антенне. Коэффициент усиления антенны дает возможность оценить, во сколько раз можно уменьшать мощность передатчика при той же дальности связи за счет применения направленной антенны.

Действующая площадь приемной антенны.

где - мощность, поступающая в приемную антенну из пространства; П – величина вектора Пойнтинга в месте расположения приемной антенны.

Шумовая температура приемной антенны Т.

Данный параметр служит мерой уровня случайных флуктуаций напряженности электрического поля (шума) в приемной антенне.

Мощность шума

,

где k = 1,38 - постоянная Больцмана;  - полоса пропускания антенны; ТА – шумовая температура антенны, измеряемая в Кельвинах.

Cвязь между параметрами антенны.

Приведём известные из антенной техники соотношения между перечисленными параметрами антенн:


где А – некоторый коэффициент; S – площадь раскрыва антенны.

Как видно из приведённых соотношений, для увеличения направленных свойств антенны нужно увеличивать отношение размеров антенны к длине излучаемой волны.

3.8 Влияние атмосферы на распространение радиоволн

Радиоволны, излученные антеннами, распространяются в околоземном пространстве. На условия распространения радиоволн влияют два основных фактора:

особенности строения атмосферы;

частота излучаемых колебаний.

Рассмотрим состав и процессы в атмосфере, влияющие на распространение радиоволн. Атмосфера простирается от поверхности Земли до высоты ~20000 км и имеет следующие слои (рис.3.17):

тропосфера, занимающая промежуток 0-15 км над поверхностью;

стратосфера, 15-60 км;

ионосфера, 60-20000км.

Тропосфера состоит из электрически нейтральных молекул газов. Особенностью ее является неоднородная плотность и изменяющаяся диэлектрическая проницаемость .

Стратосфера содержит разряженный однородный газ, по своим электрическим свойствам она близка к вакууму.

Ионосфера содержит ионизированный газ, состоящий из электронов и ионов. На границе стратосферы имеется слой озона О3.

На распространение радиоволн влияют следующие основные явления:

1) дифракция радиоволн, т.е. огибание ими Земли;

2) рефракция (искривление) волн в тропосфере;

3) отражение от земной поверхности;

4) отражение от ионосферы (рис.3.18).

5) поглощение энергии радиоволн газами и метеоосадками;

6) отражение от строений и растений на поверхности земли;

7) ослабляющая или усиливающая интерференция волн, приходящих к приемной антенне разными путями.

Степень влияния перечисленных явлений на распространение радиоволн в атмосфере зависит от диапазона частот колебаний напряженностей поля. В зависимости от того, какое явление преобладает в том или ином частотном диапазоне, различают следующие типы радиоволн (рис.3.18).

Земные - на них сильное влияние оказывает дифракция, т.е. огибание земной поверхности;

Тропосферные- распространяются в тропосфере и испытывают влияние рефракции;

Ионосферные – при распространении отражаются от ионосферы и Земли;

Прямые – распространяются по прямой линии.

3.9 Особенности распространения радиоволн в различных частотных диапазонах

Все частоты электромагнитных колебаний, отнесенные к радиоволнам: 3кГц – 3ГГц, разделены на 9 диапазонов. В таблице приведены обозначения и наименования этих диапазонов в зависимости от частоты и длины волны. Там же указаны преимущественные области использования различных диапазонов. Длины волн, соответствующие различным частотам, рассчитаны при допущении, что скорость распространения волн равна скорости света в вакууме

Рассмотрим как влияет диапазон частот на условие распространение радиоволн.

1. Очень низкие и низкие частоты (ОНЧ) и (НЧ) от 3 до 300 кГц соответствуют длинным волнам. Для них характерна дифракция. Это земные волны. Прием радиосигналов может быть осуществлен на расстоянии до нескольких тысяч километров.

2. Средние частоты (СЧ). Радиоволны этих частот подвержены дифракции, рефракции и, в зависимости от времени суток, отражению от ионосферы. Волны на


Страницы: 1, 2


© 2010 Рефераты