Вибір режиму роботи
резонансного підсилювача потужності
Вхідні данні
Вибір транзистора та
схеми резонансного підсилювача потужності
Вольт-амперні
характеристики транзистора
Схема резонансного
підсилювача потужності
Розрахунок резонансного
підсилювача потужності
Специфікація
Висновки
Література
Аналіз
резонансного підсилювача потужності
В наш
час в проміжних і вихідних каскадах радіопередаючих пристроїв, які працюють в
різних частотах диапазона широко використовуються резонансні підсилювачі
потужності.
Підсилювачем
потужності радіосигналів називається пристрій, який перетворює енергію джерела
постійного струму в енергію високочастотних коливань для забезпечення заданої
потужності цих коливань на виході підсилювача.
Підсилювач
потужності характеризується в загальному випадку рядом показників: вихідною
потужністю, коефіцієнтом підсилення потужності і корисної дії, діапазоном
робочих частот, амплітудно-частотною характеристикою, рівнем нелінійних
спотворень і власних шумів.
В
60-70-их роках більшість резонансних підсилювачів потужності були на лампах. З
часом радіоелектронні елементи вдосконалювались. Все більше почали
використовувати транзистори, які в потужних каскадах підсилення високочастотних
коливань дають можливість значно покращити такі важливі параметри
радіопередавачів військового призначення, як надійність та довговічність,
зменшити вагу та габарити. Але серйозною перешкодою широкому використанню
транзиситорів в радіопередаючих пристроях була відсутність потужних
високочастотних транзисторів з’явилась реальна можливість створення
підсилювачів на сотні ват в короткохвильовому диапазоні, і до десятків ват в
диапазоні ультра коротких хвиль.
По
технологічним причинам більша частина потужних високочастотніх транзисторів
випускається n-p-n типу. Найбільшого розповсюдження одержала схема включення
приладу зі спільним емітером, що забезпечує більш високий коофіцієнт підсилення
за потужністью.
До
підсилювачів потужності пред’являють наступні основні вимоги:
1.
Більша величина потужності вихідного радіосигналу (від кількох ват
до десятків і сотень кіловат в залежності від призначення радіостанціі).
2.
Висока економічність, яка характеризується коефіцієнтом корисної
дії підсилювача.
3.
Малі нелінійні спотворення радіосигналів, що підсилюються.
4.
Можливість плавної і дискретної перестройки підсилювача в заданому
диапазоні частот.
Важливою
проблемою при проектуванні транзисторних підсилювачів потужності є забезпечення
їх стійкості. Виникнення паразитних коливань може призвести до різних небачених
явищ: паразитній модуляціі, зниження корисної потужності, шкідливому
випроміненню, складності настройки підсилювача потужності і, що особливо
небезпечно, виходу з ладу транзисторів.
Нестійкість
підсилювача може бути зумовлена різними факторами: тепловим оберненим з’язком в
транзисторі, внутрішнім оберненим зв’язком через ємкості активної і пасивної
частини колекторного переходу і паразитні реактивні параметри транзистора,
нелінійності ємкості p-n переходів, негативними опорами, зв’язаними з
прольотними ефектами, лавиноподібним розмеженям і т.п.
В
каскадах підсилювачів потужності радіосигналів різні динамічні режими,
особливості яких обумовлені видом характеристики передачі Ik=f(Uке).
Отже РПП може працювати в трьох режимах: недонапруженому,
граничному(критичному), і перенапруженому.
Підсилювачі
потужності в загальному випадку можуть працювати як з відсіканням струмів, так
і без відсікання.
При
заданій вихідній потужності критичний режим підсилювача потужності буде
ефективніше, чим вище коефіцієнт корисної дії і коефіцієнт підсилення
потужності. Однак умови, що відповідають максимальним значенням того чи іншого
показника, не співпадають. Це призводить до необхідності рішення задач
оптимального режиму підсилювача потужності, тобто знаходження компромісних
умов, при яких забезпечується найбільш вигідне співвідношення енергетичних
характеристик з урахуванням граничних експлуатаційних параметрів транзисторів.
За
вихідні данні при розрахунку РПП приймаються справочні відомості про граничний
режим, статичні характеристики, максимальні частотні параметри і характеристика
нелінійних якостей транзистора.
Вибір
режиму роботи резонансного підсилювача потужності
Резонансний
підсилювач потужності може працювати в одному з трьох динамічних режимів,
особливості яких зумовлені видом характеристики передачі Ik=f(Uке),
яка виражає залежність колекторного струму підсилювального прибору від напруги
на колекторі при заданих величинах напруги зміщеня, напруги джерела
колекторного живлення, амплітуд напруги на базі і на колекторі.
Режим
роботи підсилювача з малим коефіцієнтом використання колекторної напруги, коли
імпульс струму має гострокінечну форму, називається недонапруженим. Для
недонапруженого режиму x< 0.7.Динамічна
характеристика даного режиму зображена під номером 1 на мал. 1а,б.
Якщо
коефіцієнт використання колекторної напруги x=0.7-0.8, то має
місце граничний(критичний)режим (графік 2 мал. 1)
Режим
роботи з великим коефіцієнтом використання колекторної напруги, коли імпульс
струму має впадину на вершині, називається перенапруженим. Для перенапруженого
режиму x>0.9 (графік 3 мал. 1)
Як
бачимо, для резонансного підсилювача потужності краще брати гранічний режим
роботи, він є оптимальним. А задача оптимізаціі - це забезпечення найбільш
вигідних основних енергетичних показників.
В
резонансних підсилювачах потужності, які працюють в граничному режимі
захоплюють дві області характеристик6 активна і область обернених зміщених
переходів(область відсікання).
Резонансний
підсилювач потужності характеризується максимальною віддачею потужності в
навантаження, коли динамічна характеристика перетинає лінію граничного режиму
при максимальній напрузі на базі.
Вхідні
данні
№п/п
Величина
Параметр
Номінал
Розмірність
1.
f
Робоча частота
90
МГц
2.
Pн
Потужність в навантаженні
0,15
Вт
3.
Ек
Напруга живлення
12
В
4.
rф
Хвильовий опір фідера
12
Ом
5.
Rвих
Вихідний опір попередньго каскаду
75
Ом
Вихідні дані транзиттор КТ 805Б
№п/п
Величина
Параметр
Номінал
Розмірність
1.
Sk
Крутизна характеристики
0,3
А/В
2.
E¢б
Напруга відсікання
0,2
В
3.
h21е
Коефіцієнт передачі
струму
20
4.
b0
Низькочастотне значення
h21е
20
5.
Ск
Ємність колекторного
переходу
4,1
пФ
6.
fгр
Гранична частота
транзистора
20
МГц
7.
Се
Ємність емітерного
переходу
20
пФ
8.
tк
Постійна часу кола
оберненого зв`язку
22
пс
9.
Uкб мах
Максимальна напруга
колектор – база
5
В
10.
Uеб мах
Максимальна напруга
емітер – база
5
В
11.
Iк мах
Максимальний постійний
струм колектора
5
мА
12.
Pк мах
Розсію вальна
потужність
3
Вт
13.
Uке мах
Максимальна напруга
колектор – емітер
135
В
14.
tп
Максимальна температура
навколишнього середовища
120
°С
15.
Rпс
Загальний тепловий опір
транзистора
30
°С/Вт
16
Lб=Lе=Lк
Індуктивність виводів
3
нГн
Вибір транзистора та схеми РПП
Задача гармонійного аналізу зводиться
до визначення форми і спектру імпульсного струму при заданій формі напруги.
Повний аналіз процесів і розрахунків підсилювача в нелінійному режимі на
високих частотах є доволі складним та громіздким. Тому робиться ряд доволі
серйозних спрощень, що дозволяє приблизити методику розрахунку транзисторних
схем до традиційних лампових.
За
вихідні данні при аналізі і розрахунку приймаються довідникові дані (відомості)
про граничні характеристики, частотні параметри і характеристики нелінійних
властивостей транзистора.
Отже,
в першу чергу нам необхідно вибрати транзистор. Вхідними даними для вибору
транзистора є робоча частота f=90 МГц і потужність в навантажені, яку ми за
рекомендаціями беремо в 1,1¸1,2 рази більше Р1=(1,1
– 1,2)Рн, враховуючі можливі втрати на розсіювання. Отже Р1=0,18
Вт
Користуючись
даними рекомендаціями і обмеженнями вибираємо транзистор великої потужності,
середньої частоти КТ 805Б
Для
реалізації резонансного підсилювача потужності враховуючи рекомендації і
обмеження, а також те, що транзистор великої потужності ми обираємо Н – схему
РПП з спільним емітером (дане включення дозволяє отримати більший коефіцієнт
потужності і меншу реакцію вхідного кола на вхідне)
Вольт – амперні характеристики
транзистора КТ 805Б