Рефераты

Дипломная работа: Усилитель мощности миллиметрового диапазона длин волн

Проведем анализ требований к модулятору, представленных в таблице.

Пункты 1, 2, 5, 6 являются директивными и обсуждению не подлежат.

Пункт 3, 4. Длительность импульса модулятора может быть больше длительности СВЧ импульса, так как длительность фронтов огибающей СВЧ импульса всегда меньше, чем у модулирующего импульса в силу действия закона степени 3/1.

Пункт 7. Определяется параметрами ЛБВ.

Пункт 8. Определяется параметрами ЛБВ.

Пункт 9. Определяется параметрами ЛБВ.

В соответствии с техническими характеристиками ЛБВ амплитуда импульса должна быть не менее 1500 В. Длительность фронта импульса tфи = 0.2 мкс. Емкость управляющий электрод – катод – Свх = 50 пФ. Определим мощность которую должен обеспечить модулятор (Рфи), чтобы зарядить входную емкость Свх на 1500 В, за время длительности фронта импульса.

Рфи = (СU)2/2tфи = 300 Вт. (2.2)

Видно, что несмотря на отсутствие тока управляющего электрода, импульсный модулятор должен обеспечивать очень большую мощность для формирования заданного значения длительности фронта импульса.


3. Разработка и обоснование структурной схемы проектируемого устройства

3.1 Структурная схема усилителя

Структурная схема усилителя мощности на ЛБВ приведена на рисунке 3.1. Усиливаемый входной сигнал поступает на вход твердотельного усилителя мощности на ЛПД (ТУ). Коэффициент усиления ТУ 16 дБ. Выходная мощность более 100 мВт. С выхода усилителя СВЧ сигнал поступает на управляемый аттенюатор. Ослабление вносимое аттенюатором выбирается таким образом, чтобы сквозной коэффициент усиления со входа усилителя на его выход не зависел от АЧХ ЛБВ. Для этого измеряется АЧХ ЛБВ и дешифратор программируется таким образом, что вносимое аттенюатором ослабление равно по величине и противоположно по знаку изменению коэффициента усиления ЛБВ, выраженному в дБ. Применение аттенюатора позволяет установить оптимальное значение мощности сигналы на входе ЛБВ, имеющей неравномерную АЧХ. При отсутствии кода частоты возможно некоторое уменьшение мощности выходного сигнала и увеличение фазовых искажений на выходе ЛБВ. При использовании усилителя в передающем устройстве РЛС частота передатчика всегда известна и формирование кода частоты усиливаемого сигнала не вызывает трудностей. С выхода УА сигнал поступает на ЛБВ. Питание ЛБВ осуществляется от высоковольтных источников питания ИП1 и ИП2. ИП1 обеспечивает питание замедляющей системы ЛБВ и имеет напряжение 25 кВ, мощность ИП1 - 40 вт. ИП2 обеспечивает питание коллектора ЛБВ и имеет напряжение 10 –15 кВ, мощность более 300 вТ. Для уменьшения массы и габаритов ИП1 и ИП2 выполнены по схеме высокочастотного преобразователя и работают на частотах 30 – 40 кГц. На управляющий электрод ЛБВ подается импульсный сигнал модулятора. Амплитуда импульса более 1.5 кВ. Для уменьшения влияний пульсаций источников питания и улучшения параметров и электромагнитной совместимости усилителя мощности на ЛБВ, частота высокочастотного преобразователя, должна быть кратна частоте повторения импульсов. Это может быть обеспечено путем синхронизации частот ИП1 и ИП2 сигналом опорного кварцевого генератора РЛС. Это позволяет обеспечить когерентность сигналов РЛС и высокочастотных преобразователей ИП1 и ИП2, частоты которых задаются сигналом с выхода делителя с переменным коэффициентом деления ДПКД1. При таком построении частота следования импульсов на выходе передатчика может задаваться сигналом с выхода ДПКД2. Выбирая требуемые значения коэффициентов деления ДПКД1 и ДПКД2, можно обеспечить необходимое значение частоты импульсов на выходе передатчика. При этом частота высокочастотных преобразователей будет равна 32 – 40 кГц.


Рисунок 3.1 - Структурная схема усилителя на ЛБВ


Рисунок 3.2 - а) Блок схема параллельного включения;

б) Блок схема последовательного включения.


Такое построение передатчика устраняет возможность появления комбинационных составляющих в спектре доплеровских частот принимаемого сигнала, образованных частотой повторения импульсов и частотой источника питания, позволяет снизить требования к коэффициенту пульсаций источника питания. Для работы усилителя мощности при отсутствии сигнала ОКГ, через коммутатор (Ком) в схему подается сигнал собственного генератора ЗГ. Частота генератора ЗГ выбрана равной 10 МГц.

Основное отличие разных реализаций современных бортовых источников питания ЛБВ заключается в способе включения коллекторного источника.

На рисунке 3.2 представлены блок-схемы для двух таких способов.

С точки зрения обеспечения заданных напряжений на электродах ЛБВ, обе схемы совершенно эквивалентны, и обе широко распространены в отечественной и мировой практике, однако имеются соображения к предпочтительному выбору.

Схема на рисунке 3.2 б) более компактна, поскольку около 50-60% напряжения получаем как бы “бесплатно” за счет суммирования коллекторного напряжения. В схеме на рисунке 3.2 а) проще реализуются требования по пульсациям и защитные функции при переходных процессах.

Конкретный выбор обычно зависит от уровня мощности источника и, в некоторой степени, от личного опыта разработчика. Как и при выборе охлаждения и в проблемах с высотностью, здесь мы сталкиваемся с пограничным случаем. Обычно при мощностях УМ ³500 Вт выбирают параллельный вариант.

При отсутствии жестких требований к массе и габаритам источника питания целесообразно использовать раздельные источники питания цепи коллектора и замедляющей системы. При этом защита по току цепей коллектора и замедляющей системы может быть осуществлена в выходных каскадах высокочастотных преобразователей.

Для увеличения времени наработки на отказ питание цепи накала должно осуществляться переменным напряжением 3 В, при частоте источника питания 50 или 400 Гц. Цепь накала ЛБВ обладает индуктивностью. Для частот 50 – 400 Гц этой индуктивностью можно пренебречь, сопротивление цепи накала считается чисто активным, значение индуктивности цепе накала ЛБВ неизвестно и может иметь большой разброс для различных экземпляров ЛБВ одного типа. При питании накала частотой 30 – 40 кГц, значение индуктивного сопротивления цепи накала увеличивается в сотни раз и пренебрегать его значением нельзя. Устранить влияния индуктивности можно путем питания цепи накала от источника тока. Однако источники питания цепей коллектора и замедляющей системы (ИП1 и ИП2) – источники напряжения. Поэтому для увеличения выходного сопротивления источника питания цепи накала напряжением 3 В, на обмотке накала трансформатора ИП2 формируется напряжение 12 В, а ток цепи питание задается резистором, значение которого равно

R = (12 – 3)/Iн, (3.1)

где I – ток накала ЛБВ ( А).

Схема цепи накала ЛБВ приведена на рисунке 3.3.

                                   L

                                                    Rн

Рисунок 3.3 - Схема цепи накала

Для устранения самовозбуждения ЛБВ и улучшения стабильности АЧХ и ФЧХ усилителя при неидеальной нагрузке, на выходе ЛБВ установлен ферритовый вентиль.


3.2 Структурные схемы источника питания и выбор элементной базы

Источник питания цепи коллектора (ИП-1) по мощности относится к ИП средней мощности. С учетом анализа технических требований за основу для предварительного расчета выберем один из известных вариантов структурных схем для ключевого источника питания средней мощности. В ИП (рис.3.4) входит входной выпрямитель, ключевой стабилизатор напряжения, мостовой преобразователь напряжения, высоковольтный трансформаторно-выпрямительный модуль, цепь обратной связи, по которой поступает информация о напряжении и токе в нагрузке, а также служебный маломощный источник питания для питания стабилизированным напряжением схемы управления и защиты +15 В. Такая структурная схема не является окончательной, в процессе отработки режимов работы всего устройства в целом она может претерпевать определенные изменения, но она позволяет провести предварительные расчеты режимов по токам и напряжениям и выбрать необходимую элементную базу для высоковольтного источника питания в целом или сформировать необходимые требования к отдельным компонентам ИП.


Рисунок 3.4 - Структурная схема ИП-1

Входной выпрямитель.

Сетевой выпрямитель выполняется на полупроводниковых диодах по мостовой однофазной схеме, преимуществами которой является удвоенная частота пульсаций и достаточно «мягкие» требования к диодам по импульсному току и напряжению по сравнению с однополупериодной однофазной схемой выпрямления. Выбор диодов производится по результатам расчетов по допустимому обратному импульсному напряжению Uобри и прямому среднему Iо и импульсному току Iпр. и. Для сетевого напряжения 220В +-5% и мостовой схемы выпрямления амплитуду обратного напряжения на диодах определим как:

Uобр.и =1,5 U0, ( 3.2)

где U0 - максимальное напряжение питающей сети, с учетом нестабильности

Uo=220+220*0,05=231В, (3.3)

Максимальный средний выпрямленный ток Io определим при наименьшем напряжении питающей сети и максимальной нагрузке, из соотношения.

Iо=Рср/Uсети мин =300/210=1,43А; (3.4)

Прямой импульсный ток диода найдем по формуле:

Iпри= 3,5Io =5А; (3.5)

Таким образом без учета эксплуатационных и конструкторско технологических требований диоды выпрямителя, выполненного по мостовой схеме должны удовлетворять следующим требованиям по напряжению и току:

Uобри>=350B,

Iпри>=5A,

Io>=1,43A.

Ниже будет показано, что для обеспечения заданной надежности и с учетом эксплуатационных требований диоды следует выбирать с некоторым запасом, как по напряжению, так и по току.

Исходя из конструктивно-технологических соображений в большинстве случаев целесообразнее использовать однофазный мост вместо дискретных диодов. Сглаживающий фильтр, включенный на выход выпрямителя, выполняет функцию сглаживания пульсаций переменного сетевого напряжения до величины приемлемой для нормальной работы преобразователя напряжения. Для ИП малой и средней мощности целесообразнее всего использовать простой емкостной фильтр, состоящий из конденсаторов, удовлетворяющих требованиям по прямому постоянному и импульсному напряжению, амплитуде пульсаций переменного тока питающей частоты и пульсаций тока частоты преобразования, которая составляет десятки килогерц, а с учетом высших гармоник -сотни кГц. Конденсаторы фильтра должны иметь низкие потери на высокой частоте (количественная характеристика –tg), низкий импеданс Z (эквивалентное сопротивление на высоких частотах, которое учитывает активные потери и реактивное сопротивление эквивалентной емкости и паразитной индуктивности, включенных последовательно). Эквивалентная емкость и паразитная индуктивность образуют последовательный резонансный контур частотой fр, причем конденсатор эффективно может работать на частотах меньших fр. Эффективным способом увеличения резонансной частоты и уменьшения потерь на высоких частотах является параллельное подключение к электролитическому конденсатору высокочастотных керамических или пленочных конденсаторы емкостью 0,1…1мкф, имеющих значительно большую резонансную частоту. Для снижения величины активной составляющей эквивалентного сопротивления, и паразитной индуктивности вместо одного конденсатора номинальной емкости можно включить несколько параллельно включенных конденсаторов аналогичного типа с суммарной емкостью, равной номинальной. При этом эквивалентное активное сопротивление уменьшается в соответствующее число раз, а следовательно уменьшается амплитуда переменной составляющей и потери на проводимости. Для ключевых источников питания разработаны специальные электролитические конденсаторы с малыми потерями на высоких частотах, низким эквивалентным последовательным сопротивлением, с большими значениями амплитуд пульсаций переменного тока.

Расчет величины конденсатора фильтра проводится по заданному коэффициенту пульсаций (кпо1) выпрямленного напряжения на частоте основной гармоники пульсаций выпрямленного напряжения. Для двухполупериодного выпрямителя частота основной гармоники пульсаций равна удвоенной частоте питающей сети т.е.

fп= 2*fc=100Гц. (3.6 )

где fc - частота питающей сети

Величина кпо1 определяется как:

 , ( 3.7 )

где U01 амплитуда первой гармоники пульсации напряжения

U0 –среднее значение выпрямленного напряжения.

Величина коэффициента пульсаций не задана, а является промежуточной величиной, определяемой схемой управления (ШИМ-контроллером) и схемой выходного каскада преобразователя напряжения. Фактически это означает, что величина коэффициента пульсаций должны быть такой, чтобы обеспечить нормальную работу преобразователя напряжения с выполнением требований по допустимой амплитуде пульсаций на выходе высоковольтного источника и суммарной стабильности выходного напряжения от воздействия всех дестабилизирующих факторов. Неоправданное уменьшение коэффициента пульсаций влечет за собой увеличение емкостей сглаживающего фильтра, а следовательно увеличение габаритов, веса и стоимости устройства. Приближенно величину емкости фильтра не заданной частоте можно определить по инженерной формуле

C=. (3.8)

где Iн - ток в нагрузке (среднее значение);

f - частота пульсаций;

U01 - амплитуда основной гармоники выпрямленного напряжения.

Типичные значения емкости конденсатора для мощностей 200-1000ВА, составляет величину порядка 200мкф...1000мкф соответственно, при постоянном напряжении 350…450Вольт. Выбор типа конденсаторов для сглаживающего фильтра весьма широк, поэтому при выборе конденсаторов следует главным образом обращать внимание на такие параметры, как низкое эквивалентное сопротивление, малые потери на высоких частотах, допустимые амплитуды пульсаций тока на основной частоте и на высоких частотах. Кроме этого также следует обратить внимание на условия эксплуатации, такие, как температура и давление окружающей среды, так как электролитические конденсаторы весьма критичны к этим параметрам.

Заметим, что величина емкости, необходимая для обеспечения прохождения высокочастотной составляющей тока преобразователя напряжения всегда намного меньше той, которая требуется для обеспечения необходимых пульсаций на частоте выпрямленного напряжения. Определяющее значение для высокочастотных составляющих имеет правильный выбор типа конденсатора по минимуму потерь на высоких частотах. В случае применения электролитических конденсаторов рекомендуется параллельно подключать высокочастотные керамические или пленочные конденсаторы емкостью 0,1…1мкф с низким значением tg и малой собственной индуктивностью. Максимальная амплитуда пульсаций переменного тока на частоте преобразования не должна превышать допустимого значения, чтобы температура конденсатора в процессе эксплуатации при заданной температуре окружающей среды не превышала допустимого значения. При этом сумма постоянной и переменной составляющей, приложенной к конденсатору не должна превышать номинального значения напряжения, на который рассчитан конденсатор.

Мостовой преобразователь напряжения

При выборе структуры будем руководствоваться следующими требованиями:

-обеспечение максимально- достижимой надежности;

-обеспечение высокого к.п.д.;

-возможность внешней синхронизации преобразователя;

-наличие высоковольтного трансформатора

-возможность пробоев высокого напряжения в нагрузке, не связанных с работой источника питания и в связи с этим способность источника сохранять работоспособность и ограничивать мощность при возникновении пробоев в нагрузке.

Преобразователь в целом состоит из схемы управления и выходного каскада.

Назначение выходного каскада - обеспечение необходимой выходной мощности с высоким кпд и высокой надежностью

Для требуемой выходной мощности (300ВА), и с учетом вышеизложенных требований, наиболее подходящей схемой для выходного каскада преобразователя будет мостовая схема (рис. 3.4), которая имеет ряд преимуществ:

-амплитуда переменного напряжения на выходе полного моста вдвое выше, чем у полумостовой схемы, что благоприятно сказывается на конструкции высоковольтного трансформатора (коэффициент трансформации уменьшается в два раза, что снижает паразитную индуктивность. частично паразитную емкость), и благоприятно сказывается на большинстве параметров высоковольтной части ИП;

-мощность потерь как статических, так и динамических равномерно распределяется между четырьмя транзисторами моста, что снижает требования к транзисторам по рассеиваемой мощности по сравнению с полумостовой схемой, а при применении таких же транзисторов повышается запас по загрузке элементов, а следовательно повышается надежность;


Рисунок 3.5 - Cтруктурная схема управления ИП на ШИМ-контроллере Т1494.

-мостовая схема преобразователя позволяет простой заменой транзисторов без переделки схемы управления увеличивать выходную мощность до нескольких киловатт, что делает схему преобразователя унифицированной и пригодной для многих применений;

-упрощается схема фильтра сетевого источника питания, ввиду отсутствия необходимости иметь расщепленный источник питания со средней заземленной точкой, необходимый для питания полумостовой схемы;

-при работе мостовой схемы с импульсами управления без паузы на нуле упрощается фильтрация выпрямленного высокочастотного напряжения – отпадает необходимость применения фильтрующих дросселей и снижаются требования к выпрямительным высоковольтным диодам, так как выходное напряжение пропорционально только числу витков вторичной обмотки и не связано с колебаниями напряжения сети и тока нагрузки, т.е. с изменением скважности.

Схема управления

Схема управления предназначена для управления выходным каскадом преобразователя, для регулировки и стабилизации выходного напряжения, формирования сигналов защиты от перегрузок по выходному напряжению и току нагрузки, мягкого запуска преобразователя, индикации и контроля работы ИП. В качестве схемы управления в настоящее время применяются специализированные интегральные микросхемы ИС, так называемые ШИМ контроллеры, выполняющие указанные выше функции. Для разрабатываемого ИП ШИМ контроллер должен удовлетворять следующим требованиям: осуществлять стандартную функцию преобразования аналог-ширина импульса, иметь возможность осуществлять внешнюю синхронизацию, иметь двухтактный выход, иметь входы для ввода сигналов обратной связи по напряжению и току, входы для управления режимами включения и выключения и другие цепи. Питание схемы управления в мощных и надежных ИП желательно осуществлять от отдельного маломощного стабилизированного источника питания, не связанного гальванически с цепями ВВИП (так называемое ”служебное питание”).

Фирмы разработчики предоставляют большой выбор ШИМ-контроллеров, задача разработчика выбрать наиболее удовлетворяющий всем требованиям технического задания, с целью наименьшего привлечения дополнительных элементов для выполнения необходимых функций.

Наиболее современные ШИМ –контроллеры. Кроме функций регулирования напряжения выполняют также функции улучшения качества электропитания. Примером современного комбинированного ШИМ-контроллера для применения в источниках питания различного назначения является ИС TDA16888-новая разработка фирмы Infineon Technologics (Siemens) в области источников питания.

Интегральная схема (ИС) TDA16888 предназначена для новых поколений источников питания с активной коррекцией коэффициента мощности (ККМ), режимом ожидания и широким диапазоном входного напряжения

TDA16888 предназначена для управления двухступенчатой топологией источника питания, включающей ККМ и ШИМ преобразователи. Внутренние интеллектуальные управляющие ИС, синхронизируют работу ККМ и ШИМ преобразователей, обладают большим количеством встроенных функций управления и контроля, что позволяет минимизировать внешние соединения без значительного ограничения гибкости разработки. ККМ преобразует выпрямленное, несглаженное напряжение сети в регулируемое напряжение промежуточной цепи. Потребляемый сетевой ток регулируется, так что его кривая приближается к форме приложенного сетевого напряжения. Всегда возможно питание постоянным напряжением. Второй ШИМ преобразователь обеспечивает передачу напряжения и потенциальную развязку цепей. Для преобразователя созданы хорошие постоянные условия работы благодаря предварительному регулированию напряжения в промежуточной цепи. В режиме ожидания, ШИМ преобразователь не активен. Топология двухкаскадного преобразователя дает высокую гибкость в пределах предъявляемых требований, мощности и КПД, а также высокий уровень надежности и стойкости по отношению к колебаниям и скачкам питающего напряжения.

Это совершенное исполнение комбинированного контроллера оптимизировано, чтобы обеспечить электромагнитную совместимость, уменьшить системные затраты, реализовать схемные решения для широкого диапазона применений. ИС разработана по правилам FMEA (эффективного анализа повреждений), которые ставят условием, что простой сбой не должен приводить к неконтролируемым выходам из строя и гарантировать риск от пожара.

В настоящее время производители электронных компонентов предлагают разработчикам большой ассортимент активных и пассивных элементов. Проблема разработчика выбрать компоненты, наиболее

Всю элементную базу для ВВИП можно разделить условно на две оптимально удовлетворяющие требованиям на разрабатываемый прибор группы:

1)  элементная база низковольтной части ИП, включая электронную часть высокочастотного преобразователя;

2)  элементная база высоковольтной части источника, включая

высоковольтный трансформатор преобразователя и высоковольтный выпрямитель.

Разделение на две группы по критерию напряжения (низкое, высокое) не случайно. При выборе элементной базы для низковольтной части ИП для разработчика ВВИП предоставлен широкий спектр комплектующих изделий и поэтому выбор конкретных компонентов, осуществляется, как правило, после выбора структурной схемы низковольтной части ИП. Вариант структурной схемы определяется техническими требованиями, такими как выходная мощность, характер нагрузки, диапазон изменения входного напряжения, требованиями стабильности и регулировки выходного напряжения и т.п. Выбор элементной базы для низковольтной части ИП как правило не представляет значительных трудностей.

Для высоковольтной части источника питания выбор элементной базы имеет свои особенности, и часто структура построения схемы высоковольтной части источника питания зависит от наличия и возможности применения тех или иных высоковольтных компонентов, а именно высоковольтных высокочастотных диодов, высоковольтных высокочастотных конденсаторов и других высоковольтных компонент (резисторы, транзисторы и т.п.). Наличие или отсутствие какого-либо высоковольтного элемента с необходимыми параметрами может повлечь за собой изменение схемы высоковольтной части ИП. От правильного выбора элементной базы зависит надежность источника питания. Поэтому тщательный анализ и выбор элементной базы является наиболее ответственным этапом проектирования высоковольтного источника питания.

3.3 Основные схемы построения импульсных модуляторов

Целесообразно рассмотреть различные варианты построения модуляторов.

В практике разработки УМ применение находят два способа:

- формирование мощного импульса на потенциал земли, и затем передача его на потенциал катода с помощью импульсного трансформатора, обмотки которого изолированы на полный потенциал катода;

-  модулирующий импульс формируется на высоком потенциале двумя ключами, которые поочередно подключают сетку к источнику смещения или превышения (так называемая схема “Тандем”), а запускающий импульс с помощью различных развязывающих устройств передается на высокий потенциал. В американской трактовке такую схему называют “плавающая платформа”, имея ввиду что сетка ЛБВ и все с ней связанные

элементы “плавают” от потенциала смещенного до потенциала превышения.

На рисунке 3.6 приведены структурные схемы.

3.6 а) - вариант с импульсным трансформатором.

3.6 б) - вариант “плавающей платформы”.


А)

Б)

Рисунок 3.6 - Варианты импульсных модуляторов.

Ф - формирователь.

Тр - импульсный трансформатор.

Uсм - источник смещения.

Uпр - источник превышения.

РУ - развязывающее устройство.

К1 - ключ U+.

К2 - ключ U -.

ПМ - подмодулятор.

Модулятор на импульсном трансформаторе

Схема модулятора приведена на рисунке 3.7.


Рисунок 3.7 - Схема модулятора.

Импульс запуска поступает на вход мощного полевого транзистора. В цепи стока включен повышающий импульсный трансформатор. Напряжение питания полевого транзистора 300В. Во вторичной обмотке формируется импульс амплитудой 1500 В. Диод D открывается и конденсатор Ср заряжается до напряжения 1700 В. При открытом диоде на нагрузке напряжение 0.7 – 1 В. После окончания импульса диод закрывается и отрицательное напряжение емкости Ср перезаряжает входную емкость ЛБВ Свх до величины 1700 В. За время между импульсами емкость Ср разряжается на 150 – 200 В, Однако при напряжениях более 1500 В ЛБВ находится в закрытом состоянии. При поступлении следующего импульса, конденсатор Свх разряжается, диод открывается и конденсатор Свх разряжается , фиксирует напряжение на уровне Uип. Резистор Rогр ограничивает ток заряда конденсатора Сн и обеспечивает прохождение тока через диод в течение всей длительности импульса. Макетирование схемы показало, что при использовании трансформатора на ферритовом сердечнике площадь которого составляла 2 квадратных сантиметра, возможно формирование импульсов со скважностью более 50. Уменьшение скважности приводит к увеличению постоянной составляющей тока через трансформатор и нарушению режима его работы. Дя обеспечения скважности 10 необходимо или устранить постоянную составляющую тока, или увеличить размеры трансформатора.

Модулятор на ключах

Ключи выполняются на лампах и транзисторах.

В российских системах преимущественно используются ламповые ключи, тогда как в зарубежных - почти исключительно транзисторные. Этому есть объяснение.

В зарубежных ЛБВ электрод, называемый сеткой, таковой и является, т.е. представляет собой ажурную мелкоструктурную конструкцию, создание которой требует исключительно высоких технологий. Моделирующее напряжение в такой системе составляет 3,5-4,5 % от Uзс. Это позволяет использовать транзисторы умеренной высоковольтности. Некоторые российские фирмы сеточные технологии освоили, другие идут более простым и надежным путем: у них сетка представляет собой достаточно массивный управляющий электрод с напряжением 7-7,5 % от Uзс, но зато не требующий принятия серьезных защитных мер. Логическим продолжением такого подхода является применение разработчиками передатчиков в качестве ключей электровакуумных ламп, также очень стойких к различным нестационарным процессам в блоке. Надо отметить, что “квазисеточные” направления исповедуют разработчики, занятые созданием достаточно массовых систем (тысячи бортов), и многолетний опыт реальной эксплуатации не отмечает проблем с такими конструкциями.

В системах с высокой частотой повторения (сотни кГц) низковольтное управление может оказаться предпочтительнее в силу квадратичной зависимости энергии перезаряда паразитных емкостей от модулирующего напряжения.

Вариант исполнения - по рисунку 3.6.б). В качестве ключей используются модуляторные лампы. Конкретный тип лампы определяется в результате расчета, но предварительно это будет либо тип, упоминающегося в разделе 2 лучевого триода, либо генераторный триод с плоской электродной системой.

Развязывающее устройство выполняется по варианту “пичковый запуск”. Функциональная схема модулятора приведена на рисунке 3.7. Работа схемы ясна из пояснений к рисунку, отметим лишь, что к “плавающей платформе” относятся: катод и сетка К1, анод К2, сетка ЛБВ, ТФ+, ИП+, вторичные обмотки Тр1, накальная цепь К1. К этим элементам предъявляются требования дополнительной электропрочности и малой емкости относительно других элементов. Достоинством ламповых модуляторов является надежность ламп при возникновение переходных процессов в высоковольтных цепях питания. К недостаткам следует отнести большие значения паразитных емкостей источников питания, необходимость создания цепей накала. Работа ламп при перезаряде емкостей с сеточными токами затрудняет использование импульсных трансформаторов для формирования управляющих импульсов большой длительности, и требует применения усилителей на входе лампы.

1.  В качестве ключей используются полевые транзисторы.

В настоящее время допустимые напряжения сток – исток полевых транзисторов составляют 600 - 700 В. Поэтому в модуляторе необходимо последовательное включение не менее трех транзисторов. Отсутствие токов затвора упрощает формирование управляющего напряжения импульсным трансформатором. Схема требует надежной защиты транзисторов при возникновении переходных процессов в высоковольтных цепях источника питания.

Применение волоконно-оптической линии при построении модулятора.

Волоконно-оптические линии связи находят свое применение в различных областях науки и техники, так как обладают рядом достоинств; широкополосностью, малыми габаритами и весом, помехоустойчивостью, не подвержены электромагнитным влияниям. обладают возможностью электрического разделения передающего и приемного оборудования. Оптическая линия предназначена для управления высоковольтными ключами и осуществляет оптическую развязку схемы управления и импульсных ключей, предназначенных для формирования коротких высоковольтных импульсов. Структурная схема оптической линии (рис.3.8) состоит из передающего оптического модуля (ПОМ),оптического разветвителя (ОР) и 4-х приемных оптических модулей (ПрОМ).


Рисунок 3.8 - Структурная схема оптической линии.

Сигнал управления подается на передающий оптический модуль, где происходит преобразование электрического сигнала в оптический.


Рисунок 3.9 - Принципиальная схема передающего модуля


Принципиальная схема передающего модуля приведена на рисунке 3.9. Модуль выполнен на основе светодиода фирмы Неw1еtt Расkard (HFBR-1412T), который обеспечивает передачу в линию среднюю мощность-13дБм.Сигнал с уровнем ТТЛ подается на микросхему типа 1554ЛИТ ( или другую подобного типа), и затем с выход элементов D1.2...D1.4,через ограничивающие резисторы и корректирующую цепочку под R4C1 подается на светодиод который преобразует электротехнический сигнал в оптический.

Оптический сигнал подается в оптическом разветвителе, который представляет собой четыре оконцованных разъемами типа FC волоконных оптических световода с диаметром сердцевины 50 мкм, объединенных в однм соединении типа FC. Таким образом от световода , который имеет соеденитель типа FC, оптический сигнал вводится в четыре волоконных световода и подается на фотодетекторы оптических приемных модулей (ПрОМ).

Приемные оптические модули выполнены по однотипной схеме приведенной на рисунке 3.10.


Рисунок 3.10 - Приемный оптический модуль.

В качестве фотодетектора использован p-i-n фотодиод.

Преобразованный p-i-n фотодиодом оптический модуль усиливается двумя однотипными усилительными каскадами , выполненными на основе операционных усилителей с токовой обратной связью типа АД8005 и низким потреблением .

Во второй каскад введена нелинейная обратная связь, которая выполняет функции АРУ при больших входных сигналах и выполнена на диодах с барьером Шотки КД922А.

Далее сигнал формируется ключевым каскадом на транзисторе КТ371 и инвертором микросхемы 15543ЛА3.

Оптическая шина имеет следующие параметры:

Длительность входного и выходного импульса - 100...30000 нс;

Фронт нарастания и спада входного импульса не более 10нс;

Время задержки выключения не более -20 нс;

Входные и выходные уровни соответствуют уровням ТТЛ;

Ток потребляемый приемной стороной - 470мкА;

Допустимая разность потенциала между передатчиком и приемником линии не менее-50кВ.


4. Расчет электрический основных узлов источника питания

4.1 Расчет низковольтного трансформатора

Конструктивные параметры трансформаторов выбираются из условия обеспечения допустимого падения напряжения на обмотках и допустимого перегрева обмоток.

В диапазоне частот от 50 Гц до 10 кГц используются стали ,свыше 10 кГц – фериты ,от 5 кГц до сотен килогерц – сплавы.

Трансформатор содержит две первичные полуобмотки ,на которые подается напряжение U1 ,две выходные обмотки , с которых снимаются напряжения U2 и U3.

Частота принята равной 50 кГц.

Напряжение U1 на первичных полуобмотках определяется входным напряжением источника электропитания и равно 132 В

Напряжения на второй и третьей обмотках заданы с учетом падения напряжения на диодах выходных выпрямителей :U2 = 4В; U3 = 100В.

Токи второй и третьей обмоток заданы : I2 = 1.5A;I3 = 0.5 А .

Диапазон температур от –50 до +65 С.

Последовательность расчета

1. Выходная мощность трансформатора

Р2= U2 / I2 + U3 / I3 = 4 • 1.5 + 100 • 0,5 = 56 В • А. (1)

2.Принимаем КПД трансформатора на базе статистических данных  = 0,99. Тогда входная мощность трансформатора

Р1 = Р2 / = 56 / 0,99 = 56.56 В*А. (2)


3. Входной ток трансформатора

I1 = Р1 / U1 = 56.56 / 132 = 0.42 А. (3)

Округляем значение входного тока: I1 = 0.5 А.

4. По значениям входной мощности P1 = 56.56 В • А и частоты f = 50 кГц выбираем из таблицы 4.2 типоразмер магнитопровода Ш12х15 марки М2000НМ1-14. Образец записи в технической документации: «Сердечник замкнутый М2000НМ1-14 ШГ2 х 15 ОЖО.707.140 ТУ».

Площадь поперечного сечения выбранного магнитопровода

Q = (12 х 15) мм = 1,8 см (4)

6. Площадь поперечного сечения провода обмотки определяется допустимой плотностью тока :

q = I /  (5)

Для выбранного магнитопровода из таблицы 4.1 определяем допустимую плотность

 < 4,4 А / мм.

6.1. Для первых полуобмоток принимаем  = 2 А/мм. Тогда сечение провода первой обмотки

q1 = I1 / 1 = 0.5 / 2= 0.25 мм. (6)

В качестве обмоточного выбираем провод марки ПЭТВ-2 (таблица 4.1). Для увеличения коэффициента заполнения окна магнитопровода и снижения потерь мощности берем два провода с диаметрами по меди (d = 0,8 мм (сечение 0,5 мм) и по изоляции с d = 0,88мм.

6.2. Для второй обмотки принимаем 2 = 2,4 А/мм. Тогда сечение провода второй обмотки

q2 = 1.5 / 2,4 = 25 мм. (7)

Таблица 4.2 -Параметры провода ПЭТВ-2

Диаметр провода по

Меди, мм

Номинальное сечение провода, мм^ Диаметр провода по изоляции, мм
0.1 0,00785 0,128
0,112 0,00985 0,14
0,125 0,01227 0,154
0,14 0,01539 0.17
0,16 0,02011 0,198
0,18 0,02545 0,22
0,2 0,03142 0,24
0,224 0,03939 0.264
0,25 0,04909 0,3
0,28 0,06154 0,33
0,315 0,07789 0,364
0,355 0,09893 0,414
0,4 0,1256 0,46
0,45 0,15896 0,51
0,5 0,19625 0,56
0,56 0,24618 0,63
0,63 0,31157 0,7
0,71 0,39572 0,79
0,75 0,44156 0,83
0,8 0,50265 0,88
0,85 0,56716 0,937
0,9 0,63617 0,99
0,95 0,70846 1,04
1,0 0,7854 1,09
1,06 0,88203 1,15
1,12 0,9852 1,21
1,18 1,09303 1,27
1,25 1,2272 1,35
1,32 1,36778 1,42
1,4 1,5394 1,5
1,5 1,7671 1,6
1,6 2,0096 1,71
1,7 2,26865 1,81
1,8 2,5434 1,91
1,9 2,83365 2,01
2,0 3,14 2,12
2,12 3,5281 2,24
2,24 3,93882 2,36
2,36 4,37214 2,48
2,5 4,90625 2,63

Для второй обмотки выбираем ленту медную ГОСТ 1173-77 с поперечными размерами 25 х 1 мм.

Страницы: 1, 2, 3, 4


© 2010 Рефераты