Рефераты

Дипломная работа: Усилитель мощности миллиметрового диапазона длин волн

Дипломная работа: Усилитель мощности миллиметрового диапазона длин волн

Министерство образования Республики Беларусь

Учреждение образования

Белорусский Государственный Университет Информатики и Радиоэлектроники

Кафедра: Систем телекоммуникаций

Факультет: Телекоммуникаций

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к дипломному проекту

НА ТЕМУ:

УСИЛИТЕЛЬ МОЩНОСТИ МИЛЛИМЕТРОВОГО ДИАПАЗОНА ДЛИН ВОЛН

Дипломник:

Руководитель

Консультанты:

по электрической части

по экономике

по производственной и экологической безопасности

Рецензент:

МИНСК - 2002


СОДЕРЖАНИЕ

Перечень принятых сокращений

Введение

1.  Современное состояние разработок усилителей мощности миллиметрового диапазона длин волн

1.1 Применение ЛБВ в радиолокационно-связной аппаратуре

2. Технические требования по реализации усилителя мощности на ЛБВ диапазона

2.1 Требования технического задания к усилителю мощности

2.2 Анализ требований к источникам питания

2.3 Анализ требований к импульсному модулятору для ЛБВ

3. Разработка и обоснование структурной схемы проектируемого устройства

3.1 Структурная схема усилителя

3.2 Структурные схемы источника питания и выбор элементной базы

3.3 Основные схемы построения импульсных модуляторов питания

4. Расчет электрический основных узлов импульсного источника

4.1 Расчет низковольтного трансформатора для импульсного источника питания

4.2 Расчет высоковольтного полупроводникового модулятора

5.  Охрана труда и экологическая безопасность. Обеспечение защиты от электромагнитных полей при эксплуатации усилителя мощности миллиметрового диапазона длин волн

5.1 Влияние на организм человека электромагнитных полей радиочастотного диапазона

5.2 Технические устройства, организационные и лечебно- профилактические мероприятия

5.3 Применение электромагнитных помещений и замкнутых экранов для защиты от электромагнитных полей

5.4 Оценка уровня электромагнитного излучения на рабочем месте

6.  Технико-экономическое обоснование

6.1 Характеристика технико-экономического обоснования проекта

6.2 Определение сметной стоимости

6.3 Определение себестоимости товара и рыночной цены

6.4 Расчет затрат у производителя

6.5 Расчет экономической эффективности

Заключение

Библиографи

Приложение А. Справка об исследовании патентной литературы


Перечень принятых сокращений.

АЧХ – Амплитудно-частотная характеристика.

ВВИП - Высоковольтные вторичные источники питания.

ВГС – Высшие гармонические составляющие.

ВЧ – Высокая частота.

ЗС – Замедляющая система.

ИП – Источник питания.

ККМ – Коррекция коэффициента мощности.

КПД – Коэффициент полезного действия.

ЛБВ – Лампа бегущей волны.

МПФС –Магнитная периодическая фокусирующая система

ПОМ – Приемный оптический модуль.

РЛС – Радио локационная станция.

СВЧ – Сверх высокие частоты.

ТТЛ – Транзисторно транзиснорная логика

ТТУ – Твердо тельный усилитель.

ШИМ – Широтно импульсная модуляция.

ЭМП – Электро магнитные поля.


Введение

Лампы бегущей волны продолжают оставаться одним из важнейших комплектующих элементов, определяющих технический уровень радиолокационно-связных систем. Этот тип ЭВП обладает превосходными рабочими и эксплуатационными характеристиками: широкой полосой рабочих частот, большим коэффициентом усиления и КПД, выходной' мощностью от десятков до сотен ватт, высокой устойчивостью к внешним воздействиям, термостабильностью параметров и высокой надежностью при долговечности до 100 тыс. ч и более. Они допускают эксплуатацию в гораздо более жестких режимах, чем твердотельные приборы.

Разработанные ЛБВ, используются в выходных усилителях ретрансляторов космических аппаратов "Молния", "Радуга", "Глобус", "Луч", "Галс" и др. Имеется большая номенклатура приборов, уже освоенных в производстве, с развитой технической базой и значительным научно-техническим заделом. Благодаря систематическим исследованиям, разработкам и внедрению все более совершенных конструктивных и технологических решений с использованием вновь разработанных материалов, высокоточного автоматизированного оборудования, современных средств испытаний и контроля, обеспечено производство ЛБВ, соответствующее современному техническому уровню, и комплектацию ими ретрансляторов в любой части сантиметрового и миллиметрового диапазона длин волн.

Направления работ по повышению технического уровня ЛБВ, выпускаемых предприятиями, определяются потребностями развития систем спутниковой связи и радиолокационно-связных систем. С целью удовлетворения этих потребностей предприятия России продолжают вести как перспективные исследовательские работы, обеспечивая высокий технический уровень своей продукции, так и опытно-конструкторские разработки для комплектации новых космических аппаратов связи и промышленное производство разработанных ранее ЛБВ.

Условно можно выделить следующие наиболее важные этапы развития техники широкополосных ЛБВ (таблица 1).

В начале шестидесятых годов было разработано под руководством А.Д. Жукова и О.С. Полякова первое поколение пакетированных широкополосных ЛБВ в диапазоне 1... 4 ГГц с выходной мощностью 100... 200 Вт. Возникшие проблемы теплоотвода от спирали, низкий КПД, высокий уровень гармоник стимулировали комплекс специальных исследований и разработок, выполненных под руководством А.М. Каца (теория и расчет приборов), Б.С.Правдина, В.В. Пензякова (теория и расчет электронно-оптических систем), В.П. Кудряшова (методы подавления высших гармоник и самовозбуждения на обратной волне), В. Б. Рабкина и Р.Ф. Козловой (новые материалы и сплавы). Ю.Н. Балалаева и Ю.А.Мельникова (магниты и магнитные системы на редкоземельных металлах) [1].

В конце шестидесятых начались работы по созданию усилительных цепочек на ЛБВ, выходным каскадом в которых являлась «прозрачная» для СВЧ-сигнала ЛБВ без поглощающей вставки с усилением 7...17дБ. Первоначально они предназначались для обеспечения непрерывно-импульсного режима работы (входная ЛБВ работала в непрерывном режиме, выходная - в импульсном). Были изготовлены экспериментальные образцы усилителя. Впоследствии был выполнен цикл исследований и разработок широкополосных усилительных цепочек, обеспечивающих уровень выходной мощности 500 Вт в диапазоне 1... 8 ГГц. Для повышения устойчивости таких цепочек был предложен «ЛБВ-вентиль», основанный на взаимодействии СВЧ-сигнала с быстрой волной пространственного заряда[2].


Таблица 1- Этапы развития техники ЛБВ

Время 60-е годы 70-80-е годы 90-е годы ,
Достижения в технологии и конструировании Магнитная периодическая фокусирующая система (МПФС). Специальные сплавы на основе меди. Импрегнированныкатоды.Токоперехватывающая и теневая сетки. Разработкаметодов триангуляции. МПФС на основе SmCo-Плющенка из молибдена, фольфрама, сплава МАГТ-0.2.Сетки из гафния .Разработка комплексированных устройств с источниками питания. ВЧ пакеты с анизотропным экраном.Разработка методов термообжатия и термо вставления.

Достигнутые параметры: верхняя частота

Выходная мощность

Полоса уиливаемых частот идентичность амплитуды и фазы КПД

10 ГГц

200 Вт непр.

1 кВт имп

2:1

± 3 дБ; ± 40дБ

10... 15%

40 ГГц

500 Вт непр.

10 кВт имп

3: 1

± 2 дБ; ± 30дБ

20... 25%

40 ГГц

1000 Вт непр

10 кВт имп

3: 1

± 1 дБ: ± 25дБ

20... 30%

Эти работы способствовали тому, что второе поколение широкополосных приборов и усилителей, , было на уровне лучших мировых аналогов, нашло широкое применение в радиоаппаратуре и позволило резко увеличить промышленный выпуск приборов и комплексированных устройств на их основе.

В девяностые годы усилия разработчиков были направлены на усовершенствование конструкции и технологии изготовления, достижение максимальных значений выходной мощности и ширины полосы усиливаемых частот, КПД, амплитудной и фазовой идентичности, уменьшение шумов, снижение массы и габаритных размеров. Практически была создана методология оптимального построения сверхширокополосных ЛБВ с учетом требований по перечисленным параметрам и разработанных конструктивно-технологических приемов и методов


1. Современное состояние разработок усилителей мощности миллиметрового диапазона длин волн

1.1 Применение ЛБВ в радиолокационно-связной аппаратуре

Лампы бегущей волны продолжают оставаться одним из важнейших комплектующих элементов, определяющих технический уровень спутников связи. Этот тип ЭВП обладает превосходными рабочими и эксплуатационными характеристиками:

широкой полосой рабочих частот,

большим коэффициентом усиления и КПД,

выходной мощностью от десятков до сотен ватт,

высокой устойчивостью к внешним воздействиям,

термостабильностью параметров

высокой надежностью при долговечности до 100 тыс. ч и более.

Они допускают эксплуатацию в гораздо более жестких режимах, чем твердотельные приборы.

Направления работ по повышению технического уровня ЛБВ, определяются потребностями развития систем связи . С целью удовлетворения этих потребностей ведутся как перспективные исследовательские работы, обеспечивая высокий технический уровень своей продукции, так и опытно-конструкторские разработки для комплектации новых систем связи и промышленное производство разработанных ранее ЛБВ [3].

Результаты разработки и особенности технологии производства ЛБВ

В последние годы наибольший объем работ, был направлен на повышение надежности, ресурса и КПД ЛБВ, улучшение спектра и фазовых характеристик ее выходного сигнала, улучшение массогабаритных параметров. Для этого были исследованы пути увеличения эффективности энергообмена в пространстве взаимодействия ЛБВ с широкополосными электродинамическими структурами и возможности рекуперирования остаточной энергии электронных потоков с широким спектром энергий электронов.

В таблице 1.1 приведены основные параметры широкополосных ЛБВ непрерывного действия, разработанных за последние 10 лет. Описание конструкции и характеристик некоторых из них позволяют составить представление о том, как практически решается задача оптимизации основных характеристик широкополосных спиральных ЛБВ.

Таблица 1.1- Современные ЛБВ

Прибор F,ГГц P,вых,Вт Кус,Дб Uсп,кВ Iк,мА Uк,кВ Размеры, мм Масса, кг Охлаждение
УВ-А3001 1...2 400 40 5 440 3,2

1040х82х86

10

Жидк.
УВ-АЗ002 1...2 1000 30 8.3 840 6

977х88х128

14

Жидк.
УВ-АЗООЗ 2...4 400 40 5.4 440 3.4

642х82х86

7

Жидк.
УВ-А3004 2...4 1000 30 9.2  840 6,5

862х100х128

12

Жидк,
УВ-АЗООб 4...8 180 40 7.5  250 4.5

500х100х75

3

ВОЗД.
УВ-А3008 8...12 200 35 7.5  250 4.5

450х100х75

3

Конд.
УВ-А3018 7,5.. 18 250 33 10.4 330 6.5/3

450х55х75

3

Конд
УВ-А3020 18..26 10 30 10 40 5

350х54х80

2.0

 ВОЗД
УВ-А3021 26...40 10 35 11 100 6

350х54х57

2,0

Конд.

Лучшие результаты получены в лампах со спиральными замедляющим

и системами (ЗС) малого диаметра, в которых для снижения СВЧ-потерь используется спиральный проводник прямоугольного сечения из материала МАГТ-0,2 с проводимостью по постоянному току, близкой к проводимости меди (не менее 85%). В таких ЗС реализованы схемы согласования фазовых скоростей в СВЧ волновом пакете с энергетическими характеристиками электронного потока вдоль пространства взаимодействия лампы, обеспечивающие передачу СВЧ-полю на частоте первой гармоники 60... 75% энергии электронов компактного сгустка, содержащего до 80% электронов на периоде СВЧ-волны [A1] .

Высокая эффективность энергообмена в пространстве взаимодействия, низкие потери СВЧ-мощности в ЗС и удобный для многоступенчатого рекуперирования спектр энергий электронов в электронном потоке на входе в коллектор при применении новых конструкций спиральных ЗС позволили увеличить электронный КПД в средней части сантиметрового диапазона до 30... 36% , а технический КПД ЛБВ с трехступенчатым коллектором электронов - до 56%. При этом были улучшены и другие параметры, влияющие на качество выходного сигнала усилителя [4]:

относительный уровень выходной мощности на частоте второй гармоники снизился до минус 25 дБ, максимальное значение коэффициента амплитудно-фазовых преобразований при изменении входных мощностей от нулевой до входной мощности, соответствующей режиму насыщения, уменьшилось до 6 град/дБ.

Полученные данные позволили сделать вывод, что в ЛБВ с электронным КПД более 30% при сопровождении электронного потока в периодических магнитных полях может быть достигнуто токопрохождение на коллектор в динамическом режиме более 97%. Увеличение электронного КПД привело к уменьшению удельного токоотбора с поверхности катода и увеличению долговечности ЛБВ [A2]. Последующее увеличение долговечности до 100 тыс ч и более стало возможным после разработки специальных технологических процессов, методов контроля качества, обеспечивающих производство основных узлов ЛБВ повышенной надежности металлокерамических, катодных, ЗС, узлов связи и МПФС.

Основные электрические параметры ряда приборов:

Рвых - выходная мощность на частоте первой гармоники,

Ky - коэффициент усиления,

I 0 -ток катода (суммарный ток электродов),

N - количество ступеней коллектора.

М - масса,

Д - долговечность,

Они приведены в таблице 1.2. В ней представлены данные из технических условий, которые, как правило, обеспечиваются конструкциями и технологией с большими производственными запасами. Результаты разработки образцов ЛБВ с КПД 60% и долговечностью 150...200 тыс. ч

Выполненные. исследования показали возможность создания и освоения производства ЛБВ средней мощности сантиметрового диапазона с долговечностью 150... 200 тыс. ч и КПД более 60% . Важнейшее условие обеспечения работы ЛБВ в течение 200 тыс. ч. - повышение эмиссионной долговечности катода. Необходимая эмиссионная долговечность достигается в двухкамерных металлопористых катодах при плотности токоотбора с эмитирующей поверхности до 1 А/см2.

В результате первой серии испытаний экспериментальных образцов ЛБВ нового поколения было обнаружено, что после наработки более 100 тыс. ч могут возникать отказы приборов из-за снижения поверхностного сопротивления керамических деталей металлокерамических узлов электронной пушки, а после наработки 100... 150 тыс. ч среди приборов с большой токовой нагрузкой на ЗС могут возникать отказы по снижению выходной мощности.

Таблица 1.2- Параметры ЛБВ

Тип Диапазон частот, ГГц Рвых. Вт Ку.дБ Uзс. кВ Iо, мА N, шт Кпд,% М,кг Д, ч
УВ-481 3,4...3,9 40 42 3,5 70 3 45 2,6 57500
УВ-А2002 3,4...3,9 80 42 3.7 130 3 45 2,6 55000
УВ-509 7,0...8,0 40 40 4,0 40 3 50 0,8 77000
УВ-А2006 11,4...11,7 22 40 5.0 40 3 40 1,9 55000
УВ-А2008А 11.7...12,5 100 48 6.5 140 5 56 1.8 100000
УВ-А2008 11.7...12,5 150 50 6,5 160 5 55 1,8 100000
УВ-А2010 13,4...14,0 50 50 5,6 55 3 40 2,0 77000
УВ-485 14,5...15,5 40 50 5,6 55 3 40 2.0 55000

Снижение поверхностного сопротивления керамических деталей в электронной пушке связано с накоплением на их поверхности проводящих материалов, испаряющихся с нагретых поверхностей катода. Для устранения этого эффекта разработаны электронные пушки, в которых керамические детали защищены экранами от попадания на них испарившихся с катода материалов. Надежность этих пушек подтверждена испытаниями, проведенными по методике ускоренных испытаний в специальных режимах в течение времени, эквивалентного наработке более 300 тыс. ч.

Страницы: 1, 2, 3, 4


© 2010 Рефераты