Рефераты

Дипломная работа: Реконструкция СЭС обогатительной фабрики

Суммарная мощность измерительных приборов определяется по формуле:

Sпр=×ВА    (67)

Суммарная мощность измерительных приборов c учетом вывода в ремонт второго трансформатора напряжения определяется по формуле:

SпрS= Sпр×2 = ×2 = 133,3 ВА

Выбираются два трансформатора напряжения НТМИ 6-66У3

Паспортные данные трансформатора напряжения:

Номинальное напряжение, кВ                                               6

Номинальное напряжение основной вторичной обмотки, В                  100

Номинальная мощность в классе точности 0,5, ВА                      75

Предельная мощность, ВА                                                             630

Схема соединения                  Y/Y/-0

Условия выбора трансформатора напряжения приведены в таблице 10.

Таблица 10 – Выбор трансформатора напряжения 6 кВ

Расчетные данные Справочные данные Условия выбора

Uуст = 6 кВ

Uном =6 кВ

Uуст £ Uном

= 133,3 В·А

=150 В·А

 £

Согласно ПУЭ потери напряжения в контрольном кабеле, питающем цепи напряжения счетчиков должны составлять не более 0,5%, а цепи напряжения щитовых измерительных приборов -- не более 1,5%

Ток вторичной нагрузки трансформатора напряжения:

I2 = S2 / U2 = 133,3 / 100 = 1,33 А

Сопротивление соединительных проводов:

Rп =×L / S = 0.0283×15 / 2.5 = 0.17 Ом,

где  – удельное сопротивление меди, Ом×м;

S – сечение провода,мм2;

L – расчетная длина провода, при соединении обмоток в звезду равная длине кабеля, м.

Потеря напряжения в кабеле:



U = %

Условие проверки по допустимой потере напряжения выполнено


7. Низковольтное электроснабжение участка флотационных машин

7.1 Схема цеховой электрической сети

Сети напряжением до 1 кВ служат для распределения электроэнергии внутри цехов промышленных предприятий, а также для питания некоторых ЭП, расположенных за пределами цеха на территории предприятия. Схема внутрицеховой сети определяется технологическим процессом производства, планировкой помещения, взаимным расположением ТП, ЭП и вводов питания, расчётной мощностью, требованиями бесперебойности электроснабжения, технико-экономическими соображениями, условиями окружающей среды.

Внутрицеховые сети делятся на питающие и распределительные. Питающие отходят от источника питания (ТП) к распределительным шкафам (РШ), к распределительным шинопроводам или к отдельным крупным ЭП. Распределительные внутрицеховые сети – это сети, к которым непосредственно подключаются различные ЭП цеха. Распределительные сети выполняются с помощью распределительных шинопроводов (ШРА) и распределительных шкафов.

По своей структуре схемы внутрицеховых электрических сетей могут быть радиальными, магистральными и смешанными.

Исходя из условия требования высокой надёжности обеспечения электроэнергией электроустановок участка флотационных машин и пожароопасной химически активной средой помещения цеха, наиболее подходит радиальная схема электроснабжения показанная на Рис. 10. Которую выполним питающими кабельными линиями от трансформатора №1 двухтрансформаторной КТП-1.

Питающие кабельные линии проложены в вертикальном туннеле по стене здания цеха и подходят распределительным шкафам и осветительному щитку. К распределительным шкафам подключены все электроприёмники участка. Питающая и распределительная сеть выполнена одножильным кабелем АВВГ различного сечения. Низковольтное компенсирующее устройство установлено на РУНН. Резервирование на стороне НН


осуществляется АВР выключателем QF2 от трансформатора №2 КТП-1.

Рис. 10. Электрическая схемы сети 0,4 кВ участка флотомашин

7.2 Расчёт электрических нагрузок в питающей и распределительной сети участка

7.2.1 Расчёт силовой электрической нагрузки в распределительной сети

Расчёт электрических нагрузок для распределительных шкафов на представлен в приложении 7.1.

Результаты расчётов силовой нагрузки сводим в таблицу 11.


Таблица 11 – Расчёт электрических нагрузок на участке флотационных


машин


7.3 Определение центра электрических нагрузок

Для определения места расположения ТП, необходимо построить картограмму нагрузок, которая представляет собой размещение на плане цеха окружностей, площадь которых соответствует в выбранном масштабе расчётным нагрузкам. Радиусы окружностей определяются по формуле:


                                         (68)

где т – принятый масштаб для определения площади круга, кВт/мм.

На основании построенных картограмм находят координаты условного центра нагрузок (УЦН)

;                  (69)

Картограмм нагрузок показана на рис 11.


Расчет центра электрических нагрузок приведен в приложении 7.2.

Рис. 11. Картограмм электрических нагрузок.

7.3.1 Выбор и расчёт троллейных линий

Троллейные линии предназначены для питания с помощью скользящих или токосъёмников передвижных подъёмно-транспортных устройств, применяемых в основных производственных, ремонтных, сборочных цехах, в котельных и т. п. Выполняются троллейные линии из профилированной стали, из алюминиевых шин, часто применяется комплектный троллейный шинопровод типа ШТМ. Сечения троллейных линий выбирают по нагреву длительным током нагрузки и проверяют на допустимую потерю напряжения о ИП до двигателя крана, находящегося в самой удалённой точке троллеев, как правило, не должна превышать 12%. Эта потеря напряжения в сетях 380 В складывается из потери напряжения в питающей линии (Uп.л = 4÷5 %) в троллеях (Uтр = 4÷5 %) и в распределительных сетях крана (Uкр = 1÷2 %)

На вводе к троллейным линиям устанавливается коммутационный аппарат, чаще всего ящик с рубильником.

В местах секционирования троллеев оставляют изоляционный зазор не менее 50 мм, который, перекрываясь токосъёмником, не вызывает перерыва в электроснабжении подъемно-транспортного механизма.

Подвод питания следует предусматривать по возможности в середине троллеев. Расчёт электрических нагрузок для выбора троллейных линий выполняют метом расчётного коэффициента.

Пиковый ток /[2] с.102/ ЭП троллейных линий определяется по формуле:

Iпик = I`пуск + (Ip – Kи · Iном.max),                               (70)

где    I`пуск – наибольший пусковой ток двигателя, входящего в группу, А;

Iр – расчётный ток нагрузки группы ЭП, А;

Kи – коэффициент использования механизма, приводимого электродвигателем с наибольшим пусковым током;

Iном.max – номинальный (приведённый к ПВ = 100%) ток электродвигателя с наибольшим пусковым током, А.

При определении потери напряжения в троллейной линии расчётные и пиковые токи определяют отдельно для питающей троллеи линии и для каждого плеча троллеев с учётом схемы подвода питания. Расчёт тролленйых линий на потерю напряжения следует производить при наиболее неблагоприятном расположении кранов в пролётах цеха /2 с. 190/.

Потеря напряжения, В, в троллеях

Uт = e · Iпик · L / 10 000,                                 (71)

где    e – потеря напряжения на 100 А пикового тока и 100 м длины троллея, В/(А·м);

L – длина троллеев в один конец от точки подключения питающей линии, м;

Исходя из технологии производства и размеров цеха принимаем длину троллеев 200 м, подвод питания осуществляем в середине. Расстояние между фазами троллеев 250 мм. Троллейную линию выполняем из угловой стали 50х50х5 мм.

Параметры двигателей крана указаны в таблице 12, а расчётная нагрузка двигателей крана найдена в таблице 2.

Таблица 12 – Параметры двигателей крана

Механизм крана Мощность двигателей, кВт Номинальный ток, А

Главный подъём

Вспомогательный подъём

Механизм передвижения моста

Механизм передвижения тележки

22

11

2 х 16

3,5

56,5

30,8

2 х 45

10,3

Итого 68,5

Используя найденные ранее данные о расчётной нагрузке крана и параметры его двигателей проведём расчёт троллейных линий (приложение 7.3).

7.3.2 Расчёт осветительных установок участка

Особенностями осветительных сетей электрических сетей по сравнению с сетями силовых ЭП являются: значительная протяжённость и разветвлённость, небольшие мощности отдельных ЭП и участков сети, наличие установок рабочего и аварийного освещения.

Для промышленных предприятий характерно два вида освещения: рабочее и аварийное. Рабочее освещение обеспечивает надлежащую освещённость всего помещения и рабочих поверхностей, аварийное – продолжение работы или безопасную эвакуацию людей из помещения при аварийном отключении рабочего освещения. Участки осветительной сети от источников питания (ИП) до групповых щитков освещения называют питающими, а от групповых щитков до светильников – групповыми. Питающие сети выполняются трёх- и четырёхпроводными, групповые линии в зависимости от протяжённости и количества подключаемых электроприёмников могут быть двух-, трёх- и четырёхпроводными.

Питающие сети для осветительных установок (ОУ) и силового электрооборудования рекомендуется выполнять, как правило, раздельными.

В производственных зданиях с несколькими встроенными КТП применяются схемы перекрестного питания рабочего и аварийного освещения (АО), при которых рабочее освещение одних участков здания питается от одной КТП, а АО – от другой, трансформатор которой не используется для питания рабочего освещения.

Расчёт осветительной сети состоит из определения сечения проводов во всех её звеньях, которые бы гарантировали: нагрев проводов, не превышающий допустимые значения температуры; допустимые значения потерь напряжения у наиболее удалённого от источника питания источника света (ИС); достаточную механическую прочность проводов

Осветительные сети чаще всего рассчитываются по допустимой потере напряжения с последующей проверкой на нагрев.

7.3.3  Расчёт осветительной сети по допустимой потере напряжения

Допустимая потеря напряжения в осветительной сети /2 с.181/, то есть потеря напряжения на участке от источника питания (обычно шин низшего напряжения ТП ) до последней лампы, в % номинального напряжения, подсчитывается по формуле

U = U0 - Umin -U т                                  (72)

где    U0 – напряжение холостого хода на вторичной обмотке трансформатора и равное 105 % номинального напряжения лампы;

Umin- наименьшее напряжение, допускаемое у ИС, % номинального (принимается равным 95% );

U т - потери в трансформаторе /2 с.180/, приведенные к вторичному номинальному напряжению и зависящие от мощности трансформатора, его загрузкии коэффициента мощности нагрузки, %.

ΔUт = т · cos  · (Uа% + Uр% · tg ),                           (73)

где    т – коэффициент загрузки трансформатора расчётной средней мощностью;

cos  – коэффициент мощности нагрузки трансформатора и соответствующий его значению tg ;

Uа% – активная составляющая напряжения КЗ трансформатора:

,                                                    (74)

где    Pk,ном – номинальные потери мощности КЗ трансформатора, кВт;

Sном,т – номинальная мощность трансформатора, кВА.

Uр% – реактивная составляющая напряжения КЗ трансформатора:

,                                                (75)


где    uк% – напряжение КЗ трансформатора.

Расчет допустимой потери напряжения в осветительной сети участка флотомашин представлен в приложении 7.4.

7.3.4 Выбор сечения проводов осветительной сети

Когда необходимо рассчитать сечения проводов разветвлённой осветительной сети и при этом выполнить условия, обеспечивающие минимальный расход проводникового материала /2 с.185/, пользуются формулой:

,                                            (76)

где    M – сумма моментов нагрузки данного и всех последующих по направлению потока энергии участков осветительной сети (включая ответвления с тем же числом проводов в линии, что и данный рассчитываемый участ), кВт·м;

M – сумма моментов нагрузки всех ответвлений, питаемых через данный участок с другим числом проводов, отличным от числа проводов данного участка, кВт·м;

бпр – коэффициент приведения моментов /2 табл.3.17/, зависящий от числа проводов на участке линий и в ответвлении.

С – коэффициент зависящий от системы сети и материала проводника /2 табл. 3.13/.

При нескольких сосредоточённых нагрузках или если участок линии имеет равномерно распределённую по длине нагрузку, что имеет место в осветительной распределительной сети, сумму моментов можно заменить моментом одной нагрузки с длиной линии, равной длине Lприв.

В частности, для нагрузки, равномерно распределённой по длине линии, м,

,                                               (77)

где    L0 – расстояние от пункта питания до точки присоединения первой нагрузки, м;

L – длина участка сети с равномерно распределённой нагрузкой, м.

В этом случае момент нагрузки

,                                              (78)

где    р – узловая мощность нагрузки.

После выбора сечения кабеля находим действительную потерю напряжения по формуле:

,                                               (79)

Расчет сечения проводов осветительной сети представлен в приложении 7.5.

7.3.5 Проверка выбранного сечения осветительной сети по нагреву Расчётный ток для двухпроводной осветительной сети

,                                         (80)

где    Pном – суммарная установленная мощность ИС в групповой линии;

Uф – фазное напряжение осветительной сети;

cos – мощности ИС.

Расчётный ток для четырёхпроводной осветительной сети

,                                     (81)

где    Uл – линейное напряжение осветительной сети.

В результате должно соблюдаться условие, длительно допустимый ток кабеля Iд выбранного сечения должен быть больше или равен расчётному току.

Ip ≤ Iд,                                                (82)

7.3.6 Выбор сечения проводов осветительной сети по механической прочности

Сечения проводников осветительных сетей выбирают по условию механической прочности: для алюминиевых проводов и кабелей минимальное сечение 2 мм2.

,

Сечения проводников осветительных сетей выбирают по условию механической прочности: для алюминиевых проводов и кабелей минимальное сечение 2 мм2.

Минимальное сечение проводов в осветительной сети 10 мм2, что соответствует условию механической прочности для алюминиевых проводов.

7.4 Выбор сечений проводов и жил кабелей по длительно допустимому току

Выбор сечения проводов и жил кабелей цеховой сети выбирают по нагреву длительным расчетным током:

где  - поправочный коэффициент на условия прокладки проводов и кабелей;

 т.к. провода и кабели прокладываются в стальных трубах.

Выбор сечений проводников для питания отдельных электроприёмников присоединяемых к распределительному шкафу определяется по номинальной мощности этого ЭП номинальный ток нагрузки Iном находится по формуле /2, с.79/:

,                                           (83)

где    Рном – номинальная активная мощность электроприёмника, кВт;

Uном – номинальное линейное напряжение сети, кВ;

cos – номинальный коэффициент мощности нагрузки;

h – номинальный КПД.

Используя расчётный ток распределительных шкафов таблица ?, поправки на температуру окружающей среды и количество параллельно прокладываемых кабелей подбираем сечение и марку кабелей.

Например для КЛ1 соединяющей распределительный шкаф РШ1 с шиной 0,4 кВ трансформатора 1 КТП1 расчёт следующий порядок выбора сечения кабеля следующий:

Расчётная нагрузка КЛ1 по таблице 10 составляет 519 А по справочнику выбираем наименьшее стандартное сечение кабеля удовлетворяющее условию формулы 75. Это одножильный кабель марки АВВГ сечением 4 (1 х 300 мм2) и длительно допустимым током 555 А. 519 А ≤ 555 А.

Выбор остальных кабелей сведём в таблицу 13 и таблицу 14.

Таблица 13 – Выбор питающих кабельных линий по условиям нагрева


Таблица 14 – Выбор проводников к отдельным электроприёмникам


7.5 Выбор аппаратов защиты

Для защиты электрических сетей напряжением до 1 кВ применяют плавкие предохранители, автоматические выключатели, тепловые реле магнитных пускателей.

Выбор аппаратов защиты производится с учётом следующих требований:

1) Номинальный ток и напряжение аппарата защиты должны соответствовать расчётному длительному току и напряжению электрической цепи. Номинальные токи расцепителей автоматических выключателей и плавких вставок предохранителей нужно выбирать по возможности меньшими по расчётным токам защищаемых участков сети или по номинальным токам отдельных ЭП в зависимости от места установки аппарата защиты с округлением до ближайшего большего стандартного значения.

2) Время действия аппаратов защиты должно быть по возможности меньшим и должна быть обеспечена селективность действия защиты соответствующим подбором надлежащей конструкции защитного аппарата и его защитной характеристики.

3) Аппараты защиты не должны отключать установку при перегрузках, возникающих в условиях нормальной эксплуатации, например при включении асинхронного электродвигателя с короткозамкнутым ротором, при рабочих пиках технологических нагрузок и т.п.

4) Аппараты защиты должны обеспечивать надёжное отключение в конце защищаемого участка двух- и трёхфазных КЗ при всех видах режима работы нейтралей сетей, а также однофазных КЗ в сетях с глухозаземлённой нейтралью

Выбор аппарата защиты питающей сети на РУНН.

Номинальный ток расцепителя должен быть не меньше расчётного тока нагрузки, длительно протекающего по защищаемому элементу /5 с.289/:

Iном.рас ³ Iр                                                    (84)

где    Iном.рас – номинальный ток расцепителя;

Iр – расчётный ток нагрузки.

При допустимых кратковременных перегрузках защищаемого элемента автоматический выключатель не должен срабатывать; это достигается выбором уставки мгновенного действия по условию

Iном.расц.мг ³ 1,25 ×Iпик                                    (85)

где    Iпик – пиковый ток, А, который для групп ЭП определяется по формуле 62 .

Расцепители выключателей с уставками, выбранными по условию избирательности, должны удовлетворять требованиям чувствительности, которые сводятся к следующему: минимальный ток КЗ (обычно рассматривают однофазное КЗ) в самой удалённой точке защищаемой линии должен быть больше номинального тока расцепителя замедленного действия не менее чем в 3 раза, а для выключателей, имеющих только расцепители мгновенного действия, минимальный ток КЗ в самой удалённой точке линии должен превышать ток установки мгновенного действия не менее чем в 1,4 раза для выключателей с номинальным током до 100 А и в 1,25 раза для всех других выключателей.

Для защиты РУНН устанавливаем автоматический выключатель ВА75, у которого Iном.расц = 2500 А.

Расчетная нагрузка на шинах

РУНН Т1 КТП-1 Iр.рунн = 1769 А.

Проверяем Iном.расц = 2500 А > Iр.рунн = 1769 А.

Пиковый ток на РУНН

Номинальный ток электродвигателя с наибольшим пусковым током по таблице 11 Iном.max = 465 А.

Кратность пускового тока АД привода насоса lпуск = 4

Ки.ном.max = 0,75

Проверяем

 >

Для защиты распределительных кабельных линий устанавливаем автоматические выключатели типа А3794, выбор выключателя осуществим на примере КЛ2 питающей распределительный шкаф РШ2.

Расчетная нагрузка РШ2 по таблице 11:

Iр.рш2 = 206 А.

Номинальное значение рабочего тока полупроводникового расцепителя

Iном.расц.рш2 = 250 А.

Проверка Iном.расц.рш2 = 250 А > Iр.рш2 = 206 А.

Пиковый ток на РШ2.

Номинальный ток электродвигателя с наибольшим пусковым током по таблице 11:

Iном.max.рш2 = 60 А.

Кратность пускового тока АД привода импеллера:

lпуск.рш2 = 4

Ки.ном.max.рш2 = 0,8

 

Проверяем

 >

Для защиты одиночных ЭП небольшой мощности, присоединяемых к распределительным шкафам, устанавливаем автоматические выключатели типа АП-50, выбор выключателя осуществим на примере защиты АД привода пеноснимателя.

Номинальный ток ЭП по таблице 11:

Iном.эп = 1 А.

Номинальное значение рабочего тока максимального расцепителя:

Iном.max.расц = 2,5 А.

Проверяем:

Iном.max.расц = 2,5 А. > Iном.эп = 1 А.

Пиковый ток ЭП.

Кратность пускового тока для АД привода пеноснимателя:


lпуск.эп = 4

Проверяем:

 >

Проверка сечения проводников по допустимой потере напряжения

Выбранные по длительно допустимому току и согласованные с током защиты аппаратов сечения проводников внутрицеховых сетей должны быть проверены на потерю напряжения. При эксплуатации электрических сетей, зная уровень напряжения на выводах у наиболее удалённого ЭП и рассчитав потерю напряжения, можно определить напряжение на вторичной стороне питающего трансформатора и выбрать устройства для регулирования напряжения на питающем конце линии. Для нормальной работы ЭП напряжение на его выводах должно быть по возможности ближе к номинальному значению.

Номинальное напряжение на вторичной обмотке трансформатора согласно ГОСТ принято на +5 % выше номинального напряжения сети. Допустимое нормальное отклонение напряжения у наиболее удалённого ЭП должно быть не ниже –5%. Таким образом общее снижение напряжения в сети от источника питания до наиболее удалённого ЭП равно 10 % номинального значения.

Для сети трёхфазного переменного тока с несколькими распределёнными нагрузками потеря напряжения определяется по формуле:

,                              (86)


где    P – расчётная или номинальная (для одиночного ЭП) мощность нагрузки, кВт;

L – расстояние до нагрузки, км;

r0, x0 – активное и реактивное удельное сопротивление материала проводника;

tg – коэффициент мощности нагрузки.

Для нахождения наибольшей потери напряжения в сети участка флотации необходимо:

1)  Найти максимальную потерю напряжения в распределительной сети у наиболее удалённого ЭП.

2)  Найти максимальную потерю напряжения в питающей сети

3)  Сумма максимальных потерь напряжения в распределительной и питающей сети не должна превышать 10 % от номинального напряжения.

Найдём наибольшую потерю напряжения в распределительной сети и результаты сведём в таблицу 15.


Таблица 15 – Потеря напряжения в распределительной сети

Найдём наибольшую потерю напряжения в питающих кабелях и результаты сведём в таблицу 16. Сумма потери напряжения в питающей и распределительной сети, не должна превышать 5%. Результаты в таблице 17.

Насос привода подачи флотошлама

Сечение кабеля или провода Fнасос = 240 мм2.

Удельное активное сопротивление провода или кабеля выбранного сечения

r0.насос = 0,129 Ом/км

Удельное реактивное сопротивление 1 км кабеля выбранного сечения при напряжении 380 В по /7, табл.7.28/.

х0.насос = 0,06 Ом/км

Uном.эп = 380 В

Коэффициент мощности ЭП:

tgнасос = 0,6.

Активная мощность ЭП:

Рнасос = 250 кВт.

Длина проводника:

Lнасос = 0,1 км.

Найдём наибольшую потерю напряжения в питающих кабелях.

Потеря напряжения в кабельной линии КЛ2 от РУНН до РШ2.

Сечение кабеля:

Fкл2 = 150 мм2.

Удельное сопротивление материала проводника:

ал = 0,0324 км/(Ом×мм2).

Удельное активное сопротивление кабеля выбранного сечения:

Средневзвешенный коэффициент мощности ЭП РШ2:

tgрш2с = 0,685.

Расчётная мощность ЭП РШ2:

Pр.рш2 = 121 кВт.

Длина кабеля:

Lкл2 = 0,04 км.



Таблица 16 – Потеря напряжения в питающих кабелях


Таблица 17 – Наибольшая суммарная потеря напряжения

7.5 Расчёт токов короткого замыкания

При расчёте токов короткого замыкания в электроустановках переменного тока напряжением до 1 кВ допускается:

1.  Использовать упрощенные методы расчётов, если их погрешность не превышает 10%;

2.  Максимально упрощать и эквивалентировать всю внешнюю сеть по отношению к месту КЗ и индивидуально учитывать только автономные источники электроэнергии и электродвигатели, непосредственно примыкающие к месту КЗ;

3.  Не учитывать насыщение магнитных систем электрических машин;

4.  Не учитывать ток намагничивания трансформаторов;

5.  Принимать коэффициенты трансформации трансформаторов равными отношению средних номинальных напряжений тех ступеней напряжения сетей, которые связывают трансформаторы;

6.  Не учитывать влияние синхронных и асинхронных электродвигателей или комплексной нагрузки, если их суммарный номинальный ток не превышает 1% начального значения периодической составляющей тока в месте КЗ, рассчитанного без учёта электродвигателей или комплексной нагрузки.

7.5.1Расчёт начального значения периодической составляющей тока трёхфазного короткого замыкания

При расчёте токов КЗ в электроустановках, получающих питание непосредственно от сети энергосистемы, допускается считать, что понижающие трансформаторы подключены к источнику неизменного по амплитуде напряжения через эквивалентное индуктивное сопротивление.

Значение этого сопротивления Хс, мОм, приведённое к ступени низшего напряжения сети, следует рассчитывать по формуле

,                        (87)

где    Uср.НН – среднее номинальное напряжение сети, подключенной к обмотке низшего напряжения трансформатора, В;

Uср.ВН – среднее номинальное напряжение сети, к которой подключена обмотка высшего напряжения трансформатора, В;

Iк.ВН = Iп0.ВН – действующее значение периодической составляющей тока при трёхфазном КЗ у выводов обмотки высшего напряжения трансформатора, кА;

Sк – условная мощность короткого замыкания у выводов обмотки высшего напряжения, МВА.

В случае, когда понижающий трансформатор подключен к сети энергосистемы через реактор, воздушную или кабельную линию (длиной более 1 км), необходимо учитывать не только индуктивные, но и активные сопротивления этих элементов.

Начальное действующее значение периодической составляющей тока трёхфазного КЗ (Iп0) в килоамперах без учёта подпитки от электродвигателей следует рассчитывать по формуле:

,                              (88)

где    Uср.НН – среднее номинальное напряжение сети, в которой произошло замыкание, В;

R1, X1 – соответственно суммарное активное и суммарное индуктивное сопротивления прямой последовательности цепи КЗ, мОм. Эти сопротивления равны:

R1= Rт + Rр RтА Rкв + Rш Rк R1кб + Rвл Rд

X1= Xc + Xт + Xр XтА Xкв + XшX1кб + Xвл ,

где    Xс – эквивалентное индуктивное сопротивление системы до понижающего трансформатора, мОм, приведённое к ступени низшего напряжения;

Rт, Xт – активное и индуктивное сопротивление прямой последовательности понижающего трансформатора, мОм, приведённые к ступени низшего напряжения сети, их рассчитывают по формулам;

,                                      (89)

,                      (90)

где    Sт.ном – номинальная мощность трансформатора, кВА;

Pк.ном – потери короткого замыкания в трансформаторе, кВт;

UНН.ном – номинальное напряжение обмотки низшего напряжения трансформатора, кВ;

uк – напряжение короткого замыкания трансформатора, %;

RтА и XтА – активное и индуктивное сопротивление первичных обмоток трансформатора тока, мОм;

Rр и Xр – активное и индуктивное сопротивление реактора, мОм;

Rкв и Xкв – активное и индуктивное сопротивления токовых катушек и переходных сопротивлений подвижных контактов автоматических выключателей, мОм;

Rш и Xш – активное и индуктивное сопротивления шинопроводов, мОм;

Rк – суммарное активное сопротивление различных контактов и контактных соединений, мОм. При приближённом учёте сопротивлений контактов следует принимать: Rк = 0,1 мОм – для контактных соединений кабелей; Rк = 0,01 мОм – для шинопроводов; Rк = 1,0 мОм – для коммутационных аппаратов;

R1кб и X1кб – активное и индуктивное сопротивления прямой последовательности кабелей, мОм;

R1вл и X1вл – активное и индуктивное сопротивления прямой последовательности воздушных линий ил проводов, проложенных открыто на изоляторах, мОм;

Rд – активное сопротивление дуги в месте КЗ, мОм;

Учёт асинхронных электродвигателей при расчёте токов КЗ

Если электроснабжение электроустановки осуществляется от энергосистем через понижающий трансформатор и вблизи места КЗ имеются асинхронные электродвигатели, то начальное действующее значение периодической составляющей тока КЗ с учётом подпитки от электродвигателей следует определить как сумму токов от энергосистемы и от электродвигателей.

При расчётах начального значения периодической составляющей тока КЗ от асинхронных электродвигателей последние следует вводить в схему замещения сверхпереходным индуктивным сопротивлением. При необходимости проведения уточнённых расчётов следует также учитывать активное сопротивление асинхронного электродвигателя.

Сверхпереходное индуктивное сопротивление асинхронного электродвигателя в мОм равно

,                                 (91)

где    Uф.ном – номинальное фазное напряжение электродвигателя, В;

Iп – кратность пускового тока электродвигателя по отношению к его номинальному;

Iном – номинальный ток электродвигателя, А;

RАД – суммарное активное сопротивление, характеризующее асинхронный электродвигатель в начальный момент КЗ, мОм.

Начальное действующее значение периодической составляющей тока КЗ от асинхронного электродвигателя в килоамперах рассчитывают по формуле

,                      (92)

где    R1, X1 – соответственно суммарное активное и суммарное индуктивное сопротивления прямой последовательности цепи, включенной между электродвигателем и расчётной точкой КЗ, мОм;

 – сверхпереходная ЭДС асинхронного электродвигателя.

    (93)

где    Uф|0|, I|0|, cos|0| – фазное напряжение, ток статора и коэффициент мощности в момент, предшествующий КЗ.

Методы расчёта несимметричных коротких замыканий

Расчёт токов несимметричных КЗ выполняют с использованием метода симметричных составляющих. При этом предварительно следует составить схему замещения прямой, обратной и нулевой последовательностей.

 В схему замещения прямой последовательности должны быть введены все элементы исходной расчётной схемы, причём при расчёте начального значения периодической составляющей тока несимметричного КЗ асинхронные электродвигатели должны быть учтены сверхпереходными ЭДС и сверхпереходными сопротивлениями.

Схема замещения обратной последовательности также должна включать все элементы исходной расчётной схемы, кроме источников ЭДС. Сопротивления обратной последовательности для асинхронных машин следует принимать равными сверхпереходным сопротивлениям.

Начальное значение периодической составляющей тока однофазного КЗ в килоамперах определяют по формуле

,                       (94)

где    R1, X1 – соответственно суммарное активное и суммарное индуктивное сопротивления прямой последовательности расчётной схемы относительно точки КЗ, мОм;

R0, X0 – соответственно суммарное активное и суммарное индуктивное сопротивления нулевой последовательности расчётной схемы относительно точки КЗ, мОм. Эти сопротивления равны:

R0= R0т + Rр RтА Rкв + Rш Rк R1кб + Rвл Rд

X0= X0т + Xр XтА Xкв + XшX1кб + Xвл ,

где    R0т, X0т – активное и индуктивное сопротивления нулевой последовательности понижающего трансформатора. Для трансформаторов, обмотки которых соединены по схеме /Y0, при расчёте КЗ в сети низшего напряжения эти сопротивления следует принимать равными соответственно активным и индуктивным сопротивлениям прямой последовательности.

Расчёта токов КЗ в сети 0,4 кВ


Рис. 12. Расчётная схема.

1. Проведём расчёт токов КЗ в цепи РУНН – КЛ1 – РШ – АД(скрубер) по расчётной схеме рис. 12.

Рис. 13. Схема замещения.

Составим схему замещения с учётом подпитки от асинхронных электродвигателей показанную на рис 13.


Рис. 14. Эквивалентированная схема прямой последовательности

4. Находим эквивалентную ЭДС источников (фазную)

,                                      (95)

5. Находим эквивалентное сопротивление прямой последовательности расчётной схемы относительно точки КЗ.

6.  Рассчитаем начальное действующее значение периодической составляющей тока трёхфазного короткого замыкания с учётом асинхронных двигателей.

7.  Находим активное и индуктивное сопротивление нулевой последовательности относительно точки КЗ.

8.  Рассчитаем начальное действующее значение периодической составляющей тока однофазного КЗ.

9.  Определяем величину ударного тока КЗ.

10. Величину периодической составляющей и ударного тока КЗ в разных точках электрической сети сводим в таблицу 18.

Расчет токов короткого замыкания приводится в приложении 7.6.



Таблица 18 – Величина тока КЗ в различных точках электрической сети 0,4 кВ


7.6 Проверка выбранных проводников и аппаратов на действие токов КЗ

Проверку автоматических выключателей следует производить по условиям:

Iоткл.ном ³ Iп0;                                                (96)

iвкл ³ iуд;                                             (97)

Проверка проводников по условию соответствия выбранному защитному устройству

,                                         (98)

где  - коэффициент защиты по /[3] табл. 7.6/, представляющий собой отношение длительного тока для провода или жил кабеля к параметру защитного устройства;

  – параметр защитного устройства (ток срабатывания, номинальный ток).

Проверим выключатель QF1 типа ВА75:

Страницы: 1, 2, 3, 4


© 2010 Рефераты