Рефераты

Дипломная работа: Реконструкция котла - утилизатора КСТ-80


2.6.4 Выбор предохранителей

Для выбора плавких вставок предохранителей ответвлений, ведущих к одиночному электродвигателю с легким пуском ток вставки Iпл.вст, А, определится:

Iпл.вст ≥ Iпуск/2,5 - для насосов и вентиляторов;

Iпл.вст ≥ 1,2×Iсв× - для сварочного аппарата;

Iпл.вст ≥ Iпуск/1,6 - для кранов.

Результаты расчета сведены в таблицу 25.

2.6.5 Выбор автоматических выключателей

Условия выбора автоматических выключателей следующие:

Iном.автомата.≥ Iр

Iср.тепл.расц.≥ Iном.двиг

Iср.эл.маг.расц.≥ 1,25×Iпуск

Результаты расчета сведены в таблицу 26.

2.6.6 Выбор мощности трансформаторов цеховой подстанции

Ориентировочная мощность трансформатора Sор.т., кВА, определяется:

,                                  (44)

где Sр.ц - расчетная мощность цеха, кВА;

N - число трансформаторов на подстанции;

kз - коэффициент загрузки трансформатора.

 кВА

Выбираем для установки на цеховой подстанции трансформаторы типа ТСЗ-630, 2 шт.

Определяем минимальное число цеховых трансформаторов, Nmin, одинаковой мощности, предназначенных для питания технологически связанных нагрузок:

,                  (45)

где Pр.ц - расчетная нагрузка цеха, кВт;

- коэффициент загрузки трансформаторов в нормальном режиме;

 - добавка до ближайшего целого числа.

шт.

Определяем экономически оптимальное число Nопт трансформаторов в цехе:

Nопт= Nmin+m=2+0=2 шт.           (46)

где m - дополнительное число трансформаторов.

2.6.7 Компенсация реактивной мощности

При выборе числа и мощности цеховых трансформаторов одновременно должен решаться вопрос об экономически целесообразной величине реактивной мощности, передаваемой через трансформаторы в сеть напряжением до 1 кВ.

Согласно норм технологического проектирования систем электроснабжения, мощность компенсирующих устройств выбирается по 2-м этапам:

1 Исходя из возможной передачи реактивной мощности через трансформаторы из сети 6-10 кВ.

2 Выбор дополнительной мощности компенсирующих устройств из условий оптимизации потерь мощности в трансформаторах и сети 6-10 кВ.

Тогда суммарная мощность низковольтных компенсирующих устройств Qнк, квар, составит:

Qнк= Qнк1+Qнк2,                           (47)

где Qнк1, Qнк2 - суммарные мощности низковольтных компенсирующих устройств, определенные на 2-х указанных этапах расчета.

Определим возможную наибольшую реактивную мощность, Q1р, квар, которая может быть передана через трансформаторы в сеть 0,4 кВ:

,        (48)

 квар.

Суммарная мощность конденсаторных батарей Qнк1 квар, на стороне 0,4 кВ составит:

Qнк1= Qрн+Q1р=641,18-777,8=-136,62, квар.

Так как в расчетах оказалось, что Qнк1 меньше нуля, то установка низковольтных компенсирующих устройств на первом этапе расчета не требуется.

Дополнительная мощность, Qнк2 квар, НБК для данной группы трансформаторов определяется:

Qнк2= Qрц+Qнк1-×Nопт ×Sнт,

где  - коэффициент, зависящий от расчетных параметров Кр1, Кр2 (Кр1=12, Кр2=2, тогда =0,55).

Qнк2= 641,18+0-0,55×2 ×630=-51,82,

Так как Qнк2 меньше нуля, то принимаем Qнк2=0 и, следовательно, установка НБК в цехе не требуется.

2.6.8 Расчет питающей линии 10 кВ

Определяем сечение по экономической плотности тока Fэ, мм2:

Fэ = Ip/j­э,                                      (49)

где Iр - расчетный ток линии в нормальном режиме, А;

,                          (50)

где Sp - расчетная нагрузка секции подстанции;

n - количество кабельных линий;

j­э - экономическая плотность тока.

А

Fэ= 21,9/1,4 = 15,6 мм2

По справочнику /9, 45/ принимаем кабель ААБ с бумажной изоляцией и алюминиевыми жилами сечением F=16 мм2 (Iдл.ток.=75 А)

Определяем расчетный ток Iрк, А одного кабеля

Iрк =Ip/n,                                      (51)

где n - число запараллеленных кабелей в одной линии;

Iрк =21,9/2 = 10,95 А;

Проверяем выполнение условия по нагреву в нормальном режиме

I'дл.доп. ≥ Iрк,                                      (52)

Определяем длительно допустимый ток I'дл.доп., А, кабеля

I'дл.доп. = Iдл.ток ×Кл×Кt,                     (53)

где Кл - поправочный коэффициент на количество прокладываемых кабелей в одной траншее; по /11, 28/ Кп = 0,9;

Кt - поправочный коэффициент на температуру окружающей среды; при нормальных условиях Кt = 1.

I'дл.доп. = 75×0,9×1 = 67,5 А

Отсюда видно, что условие (52) выполняется, следовательно, кабель по нагреву проходит.

Определим ток одного кабеля IАВ, А, в послеаварийном режиме:

IАВ=2× Iрк                                                                  (54)

IАВ=2×21,9=43,8 А.

Проверим выбранный кабель по условию нагрева в послеаварийном режиме:

- рассчитаем допустимый ток кабеля I'АВ, А в послеаварийном режиме:

I'АВ= I'дл.доп×КАВ,                             (55)

где КАВ - коэффициент аварийной перегрузки;

I'АВ=67,5×1,25=84,37 А.

- проверим выполнение условий по нагреву в послеаварийном режиме:

I'АВ≥ IАВ

84,37≥43,8

Проверка выбранного сечения по допустимой потере напряжения

ΔUдоп ≥ ΔUp,                                   (56)

где ΔUp = ,

здесь n - число кабелей в линии;

P, Q - расчетные нагрузки в кабельной линии;

r=1,95 , x=0,113 - сопротивления одного кабеля Ом/км;

l=0,012 км

ΔUp =  %

Проверка кабеля на термическую стойкость производится по условию:

,                           (57)

где - установившийся ток короткого замыкания линии, А;

С - коэффициент, учитывающий изменение температуры до и после короткого замыкания; по /11, с. 53/ С = 95;

tпр = tз + tв = 1+ 0,075=1,075 с;      (58)

 Для вычисления токов короткого замыкания, составим расчетную схему и схему замещения. Расчет производится в относительных единицах, точным методом.

Рисунок 11. Расчетная схема

Рисунок 12. Схема замещения

Задаемся базисными условиями.

Принимаем базисную мощность Sб = 6 МВА (6000кВА)

Базисные напряжения Uб=10,5 кВ

Определим сопротивления элементов схемы, приведенные к базисным условиям.

1) ЭДС генератора Ег:

                                                    (59)

2) Сопротивление кабельных линий:

                                                    (60)

3) Сопротивление генератора:

                                                    (61)

Определим результирующее сопротивление в точке К1:

                                                    (62)

Определим базисный ток Iб, кА

(63)

Определим установившийся ток, Iк, кА:

(64)

Определим термически стойкое сечение Fт, мм2:

(65)

Окончательно принимаем сечение кабеля 10 кВ, Fк=16 мм2 - ААБ-10-2 (3×16).

2.6.9 Конструктивное выполнение сети 0,4 кВ

От подстанции до РП сеть 0,4 кВ выполнена проводами АПВ и кабелем ВВГ, проложенными открытым способом по стене на скобах, вбитых в стену.

Провода от РП к электроприемникам проложены скрытым способом, в пластмассовых трубах под полом на глубине 100 мм, при котором обеспечивается высокая надежность и хорошая механическая защита проводов.

2.7 Энергоутилизационная мини-ТЭЦ

После проведенных обследований и расчетов приходим к выводу, что реализовав ряд мероприятий, имеется возможность преобразовать котельную УСТК в энерго-утилизационную мини-ТЭЦ, с установкой двух конденсационных турбогенераторов.

Таблица 27 - Характеристика устанавливаемых блочных турбогенераторов

Параметр Значение
Тип блочного турбогенератора ТГ-3/6,3-С-1
Номинальная мощность, кВт 3 000
Частота вращения, об/мин:
   ротора турбины 3 000
   ротора генератора 3 000
Параметры 3-х фазного электрического тока:
   напряжение, В 6 300 (10 000)*
   частота, Гц 50

Номинальные параметры сухого

насыщенного пара (рабочий диапазон):

   абсолютное давление, МПа 1,4 (1,0 – 1,8)
   температура, °С 280 - 380
Номинальный расход пара, т/ч 25,02
Номинальные параметры охлаждающей воды:
   температура, °С 30

   расход, м3/ч

900
Масса турбогенератора, т 27
Масса поставляемого оборудования, т 29,7
Габариты турбогенератора, м:
  длина 5,8
  ширина 3,4
  высота 2,8
Тип генератора* ТК-4

* Напряжение и тип электрогенератора оговариваются при заказе.

Охлаждение конденсаторов турбин будет обеспечиваться оборотной технической водой с насосной станции №15, для этого планируется демонтировать два устаревших насоса и на их место поставить новые.

Отдельно устанавливаются: эжектор пароструйный, блок откачки конденсата (регулятор уровня конденсата, два конденсатных электронасоса), аварийный маслобак или аварийный масляный насос, щит КИП.

Турбогенераторы планируется разместить в помещении электромастерской (в настоящий момент используется как склад) непосредственно примыкающей к основному корпусу котельной УСТК

Турбогенераторы состоят из турбины в сборе, синхронного генератора и вспомогательного оборудования, размещенного на общей раме, со встроенными масляным баком и конденсатором


Выводы по специальной части

Произведенные расчеты показывают техническую возможность преобразования котельной УСТК цеха теплогазоснабжения в энергоутилизационную мини-ТЭЦ, что отвечает требованиям современного развития промышленной энергетики. В данном дипломе предусматривается установка 2-х турбогенераторов типа ТГ-3/6,3-С-1, с суммарной электрической мощностью 6 МВт, краткие параметры турбогенераторов представлены в таблице 24.

Таблица 28 - Характеристика блочного турбогенератора

Наименование параметров Значение параметров

Номинальная электрическая мощность, кВт

Параметры свежего пара

 абсолютное давление, МПа

 температура, ºС

Расход охлаждающей воды, м3/час

Номинальный расход пара, т/час

3 000

1,4 (1,0- 1,8)

280- 380

900

25,02

Установка турбин позволит повысить выработку собственной электроэнергии ОАО «Урал Сталь» на 2%.

Демонтаж третьей предвключенной поверхности нагрева позволяет увеличить межремонтный период работы котлов и уменьшить затраты на ремонт. Надежность работы повышается.


3 Автоматизация и механизация производственных процессов

Правильный выбор схемы регулирования и её параметров имеет весьма важное, практически определяющее значение. Этот выбор зависит от тщательного учета требований, которые ставятся условиями регулирования данного агрегата. Так как практически никогда нельзя в полной мере удовлетворить всем требованиям, необходимо особенно тщательно отобрать главные и на их выполнении сосредоточить основное внимание при разработке системы регулирования.

При проектировании системы регулирования необходимо соблюдать условие, при котором всякий выход из строя узла или линии связи должен приводить к остановке агрегата или снижению нагрузки на него. Если этому требованию не удовлетворяет работа какого-либо элемента системы регулирования, то необходимо обеспечить максимальную надёжность этого элемента в любых условиях эксплуатации. Недостаточная надёжность какого-либо узла в системе регулирования может практически сделать нецелесообразным применение автоматического регулирования. Отказ в работе системы или её ложное срабатывание могут привести к более тяжелым последствиям, чем отсутствие регулирования, а уход за ненадежными системами зачастую требует более квалифицированного персонала, чем обслуживание регулируемого агрегата.

Для всякой силовой установки, казалось бы, автоматическое регулирование должно приводить в соответствие производимую и потребляемую мощность. В действительности при такой постановке задачи не выполняется требование о поддержании определенного качества энергии. Для установок переменного тока качество энергии определяется постоянством частоты тока и его напряжения. Поэтому соответствие между потребляемой и производимой мощностью должно обеспечиваться при одновременном поддержании заданного уровня частоты и напряжения переменного тока. Единственный параметр, однозначно определяющий баланс потребления и производства энергии, - частота сети. Любое изменение нагрузки системы обязательно вызывает изменение частоты сети. Поэтому только измерение и поддержание этого параметра на неизменном уровне позволяют выбранным способом не только поддерживать баланс энергий, но и сохранять высокое качество переменного тока. С другой стороны, измерение частоты может производиться в любой точке системы.

В современных условиях экономически нецелесообразно все изменения частоты полностью воспринимать всеми агрегатами энергетической системы. В последнем случае все агрегаты должны быть настолько недогруженными, чтобы у них сохранялась способность воспринять дополнительную нагрузку полностью. Эта недогрузка должна выбираться с большим запасом с учётом недостаточной приемистости блоков. Но недогрузка мощных блоков должна покрываться увеличением нагрузки менее экономичных агрегатов, существующих во всех энергетических системах. Поэтому более целесообразно мощные агрегаты недогружать лишь настолько, чтобы они воспринимали начальное отклонение частоты. Одновременно на наименее экономичных электростанциях следует устанавливать прецизионные регуляторы частоты, которые передавали бы регулируемым агрегатам соответственно увеличенную команду, что приведет к более быстрому изменению их нагрузки и частота системы восстановится раньше, чем мощные агрегаты воспримут все её изменения. Станционный регулятор частоты выполняет так называемое вторичное регулирование. Соответственно этому изменяются условия работы систем регулирования.

В аварийных ситуациях необходимо значительно большее быстродействие, чем это было раньше, поскольку системы регулирования выполняют функции не только поддержания частоты, но одновременно и защиты.

Автоматизация технологических процессов является одним из решающих факторов повышения производительности, обеспечения оптимальных режимов работы оборудования, повышения надежности систем и безопасности работы персонала.

Система контроля позволяет осуществить измерение параметров работы котла по щитовым и местным приборам и своевременно выявлять нарушения важнейших параметров с помощью звуковой и световой сигнализации. Система предназначена для обеспечения экономичной, безопасной эксплуатации и оперативного управления работой котла и его оборудования.

Система защит (блокировок) предусматривает оперативное предотвращение повреждений оборудования при достижении предельных параметров работы котла.

Применяемые в котлах-утилизаторах средства автоматического управления представляют собой комплекс, включающий элементы:

- технологический контроль;

- сигнализацию (предупредительную, аварийную и контрольную);

- технологическую защиту котла-утилизатора от нарушения рабочего процесса;

- автоматическое регулирование (стабилизацию заданного значения регулируемого параметра);

- дистанционное управление запорными и регулирующими органами, операциями пуска и останова механизмов, узлов, агрегатов;

- запорно-регулирующую и аварийную блокировку;

Автоматическое регулирование - важнейший элемент средств автоматического управления, служащий для поддержания заданного значения регулируемого параметра.

Автоматическое регулирование независимо от свойств регулируемого параметра состоит из характерных элементов:

 - объекта регулирования;

- автоматического регулятора.


 




4 Безопасность жизнедеятельности и экологичность

4.1 Анализ опасностей и вредностей на проектируемом объекте

К работе по обслуживанию котлов-утилизаторов допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, обученные по профессии аттестованные на знание инструкции по охране труда и имеющие удостоверение на право обслуживания выше указанных объектов, заверенное государственным инспектором Ростехнадзора. Допуск осуществляется после прохождения стажировки по эксплуатации на объектах цеха теплогазоснабжения распоряжением по цеху.

В процессе работы на оператора (машиниста-кочегара) котлов-утилизаторов могут воздействовать опасные производственные факторы, основными из которых являются:

1) воздействие движущихся и вращающихся частей механизмов - при проникновении в опасную зону во время работы механизма (насосы - НКУ-250, ПЭ-100-53 (56), дымососы - ДН-12, мельничные вентиляторы - ВМ-160/850);

2) термические ожоги при прикосновении к неизолированным частям технологических агрегатов, трубопроводов, а также при не использовании средств индивидуальной защиты (СИЗ) или при повреждении тепловой изоляции на поверхности оборудования, трубопроводов (температура неизолированных паропроводов - до 380 °С, трубопроводов питательной воды - до 105 °С);

3) поражение электрическим током при прикосновении с токоведущими частями механизмов, находящихся под напряжением, при отсутствии или неисправности заземления (напряжение: циркуляционные насосы - 0,4 кВ, питательные насосы - 3 кВ, при силе тока до 83 А);

4) разрушение конструкций, трубопроводов и элементов котла (избыточное давление: паропроводы до 1,6 МПа, трубопроводы питательной воды - до 5,6 МПа, барабан котла - 1,8 МПа). В связи с высокими рабочими параметрами котлов-утилизаторов КСТ-80, данное оборудование зарегистрировано в Ростехнадзоре.

5) высота при неисправности перильных ограждений обслуживающих и переходных площадок (максимальная отметка обслуживаемого оборудования 15,5 м);

6) повышенный шум в рабочей зоне при неиспользовании СИЗ (в районе работающих мельничных вентиляторов - 136,5 дБ, насосов - 123 дБ);

7) химические ожоги при проведении щелочения, кислотной либо реагентной промывке оборудования при неиспользовании СИЗ или неосторожном обращении с хим.растворами (NaOH)

Микроклимат рабочего места.

Установленные нормы оптимального микроклимата в рабочей зоне в зависимости от сезона года и тяжести работы приведены в таблице 29.

Таблица 29 - Нормы оптимального микроклимата в рабочей зоне; относительная влажность 60-40%

Сезон года, температура наружного воздуха Категория работ

Температура в рабочей зоне,

ºС

Скорость движения воздуха,

м/с

Холодный и переходной; менее +10 ºС

Легкая I

Средней тяжести II а

Средней тяжести II б

Тяжелая III

20 - 23

18 - 20

17 - 19

16 - 18

0,2

0,2

0,3

0,3

Теплый; +10 ºС и более

Легкая I

Средней тяжести II а

Средней тяжести II б

Тяжелая III

22 - 25

21 - 23

20 - 22

18 - 20

0,2

0,3

0,4

0,5

На участке УСТК микроклимат в рабочей зоне соответствует требованиям категории работ средней тяжести (II б).

Допустимая область влажности воздуха 40-75%. При влажности более 75% затрудняется испарение пота, менее 40% - наступает пересыхание слизистой оболочки.

Допустимая область подвижности воздуха 0,2-1 м/с. Застойный воздух затрудняет конвекцию; слишком подвижный вызывает сквозняк.

Человеку необходим чистый естественный воздух без примесей пыли, вредных аэрозолей, газов, паров. При наличии в воздухе частиц ядовитых веществ возможно отравление, вредной пыли - заболевание легких (пневмокониоз), угольной пыли (что характерно для участка котельной УСТК) - антрокоз легких.

Избыточная теплота.

Нагретые поверхности котлов, паропроводов, турбин излучают тепловую энергию инфракрасного спектра мощностью в несколько тысяч Вт/м2, в то время как допустимое облучение тела человека в этом диапазоне спектра - не более 350 Вт/м2. Применяют следующие способы защиты от избыточной теплоты: теплоизоляцию горячих поверхностей; экранирование источников излучения поглощающими и отражающими теплоту экранами; воздушные души и вентиляцию; защитную одежду; ограничение длительности работы при больших тепловых нагрузках.

Согласно санитарным нормам температура наружных поверхностей оболочек теплоизоляции не должна превышать 45 ºС. Поэтому излучающие поверхности покрывают тепловой изоляцией: шамотом, изделиями из диатомового кирпича, шлаковой ватой, асбестом со слюдой, минеральной ватой, асбестом, стеклополотном, торкретмассой.

Освещенность рабочих мест и производственных помещений.

Для обеспечения нормальных условий работы все производственные, вспомогательные и бытовые помещения, а также проходы, проезды и определенные участки предприятия должны освещаться. Особенно благоприятен естественный свет, вследствие большого рассеяния, оптимального спектра излучения, наличия ультрафиолетового излучения,

необходимого для жизни человека (длина волны 297 нм) и обеззараживания воздуха (максимальный эффект обеззараживания при длине волны 254 нм).

В производственных помещениях УСТК в данное время применяется естественное освещение, а в вечернее и ночное время - искусственное. Естественное освещение осуществляется тремя способами: боковое через окна; верхнее через световые фонари и комбинированное. Естественная освещенность на рабочем месте в помещении характеризуется коэффициентом естественной освещенности - КЕО. Значения КЕО для производственных зданий расположенных между 45 и 60 ° северной широты, приведены в таблице 30.

Коэффициент естественной освещенности

Искусственное освещение осуществляется комбинацией общего освещения с местным освещением рабочих мест. Выбор системы освещения регламентируется строительными нормами и правилами и зависит от требований технологического процесса, размеров объектов различения и характера зрительных работ.

Таблица 30 - Значения КЕО

Разряд работы Характер работ, выполняемых в помещениях

Размер

объекта различения, мм

Коэффициент естественной

освещенности

при комбинированном освещении при боковом освещении

I

II

III

IV

V

VI

Особо точные

Высокой точности

Точные

Малой точности

Грубые

Работы, требую­щие общего на­блюдения за ходом производственного процесса

0,1 и менее

0,1-0,3

0,3-1,0

1-10

Более 10

-

10

7

5

3

2

1

3,5

2

1,5

1,5

0,5

0,25


Таблица 31 - Нормы освещенности некоторых помещений теплоэнергетических установок

Рабочие места

Освещенность, лк,

не менее

Пульты управления, измерительные приборы, указа­тели уровня воды на котлах

Машинный зал

Фронт котлов, подвал машинных залов, помещения дымососов, вентиляторов топливоподачи, электропо­мещения

Зольное помещение, площадки обслуживания, про­ходы за котлами

Лестницы оборудования

300

200

100

50

10

По результатам мониторинга микроклимата рабочих мест, предоставленным управлением промышленной безопасности Общества, нормы освещенности и КЕО на участке УСТК соответствуют нормам.

Производственный шум и вибрация.

Работа некоторого оборудования промышленных установок сопровождается значительным шумом, вибрацией и сотрясением. К такому оборудованию относятся дробилки, мельницы, компрессоры, двигатели, вентиляторы, пневматический инструмент и др. Шум, вибрации и сотрясения отрицательно влияют на организм человека и при длительном воздействии могут вызвать профессиональные заболевания.

Основными характеристиками шума являются частотный спектр интенсивности звука и звуковое давление.

Органы слуха человека воспринимают частоты от 20 Гц до 20000 Гц и звуковое давление от  до 20 Па. Уровень звукового давления, достигающий болевого порога, составляет 130 дБ при частоте 1000 Гц.

Санитарными нормами установлены допустимые уровни звукового давления. Они приведены в таблице 32.


Таблица 32 - Предельно допустимые уровни звукового давления шума, действующие более 4 часов

Рабочие места, помещения Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц
63 125 250 500 1000 2000 4000 8000

Котельный участок - щит котлов

Турбинный участок - щит управления

95

83

87

74

82

68

78

63

75

60

73

57

71

55

69

54

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


© 2010 Рефераты