Рефераты

Учебное пособие: Гироскоп

Русский самолет "Илья Муромец", первый полет которого состоялся в декабре 1913 г., имел 2 комплекта маятниковых креномеров и магнитные компасы; один для летчика и второй для штурмана. Опыт использования магнитного компаса на самолете "Илья Муромец" и явился началом развития самолетовождения по приборам.

Однако ни магнитная стрелка, ни маятник не могли в условиях полета, так же как и на качающемся корабле, сохранять свои положения неизменно совмещенными с направлениями полуденной линии и истинной вертикали. Это объясняется тем, что даже при прямолинейном полете вследствие атмосферных возмущений, случайных отклонений рулей, неравномерной работы двигателей и других причин самолет совершает непрерывные колебания вокруг своих осей (рис.14). Эти колебания порождают перемещения с ускорениями опор подвесов магнитной стрелки и маятника в корпусе самолета, обусловливая тем самым их отклонения от направлений полуденной линии и вертикали. Кроме того, при колебаниях самолета силы трения, неизбежно существующие в опорах подвесов, воздействуя на магнитную стрелку и маятник, увлекают их за поворотами самолета.

Рис.14. Схема самолета: 1 - продольная ось; 2 - вертикальная ось; 3 - поперечная ось

Все это, учитывая непрерывные колебания самолета, порождает и непрекращающиеся колебания маятника и магнитной стрелки около направлений вертикали и полуденной линии. Указанные обстоятельства затрудняют пользование рассмотренными приборами для определения углов крена самолета по отношению к плоскости горизонта и его курсовых углов относительно плоскости меридиана.

Таким образом, ни магнитная стрелка, ни маятниковый креномер не могли явиться надежными указателями положений плоскостей меридиана и горизонта. Вот почему возникла насущная потребность в создании принципиально новых приборов, которые бы в специфических условиях полета сохраняли неизменным свое положение относительно плоскостей горизонта или меридиана. Было сделано много попыток улучшения качества и магнитного компаса и маятникового креномера, однако ни одна из них не дала удовлетворительного решения. И только применение гироскопа позволило создать навигационные приборы, удовлетворяющие все возрастающим требованиям авиации.

Естественно, что внедрению гироскопа в самолетовождение во многом способствовал опыт морского флота, который к этому времени накопил достаточное количество материала по практическому использованию гироскопического компаса на море. Однако было бы ошибочным полагать, что авиация лишь позаимствовала у морского флота уже готовые гироскопические приборы. Малые габариты кабины самолета, высокие скорости его полета, ограничение веса

Для всех механизмов и приборов, устанавливаемых на самолете' исключали возможность использования, на нем морского гироскопического компаса, обладающего, как известно, значительными габаритами и весом.

Правда, в начале XX в. были предприняты попытки использовать гироскопический компас в авиации. Дирижабль "Италия", совершивший в 1928 г. полет к Северному полюсу, был оборудован гироскопическим компасом, однако эксперимент этот был неудачным. Дальнейших же попыток использования гироскопического компаса в авиации, как об этом можно судить по периодической печати, не предпринималось.

Самолетостроителям в этом вопросе пришлось идти самостоятельным путем. Без сомнения, установившиеся методы проектирования и технологические приемы изготовления гироскопических компасов были в полной мере использованы самолетостроителями, что и оказало решающее влияние на сравнительно быстрое внедрение гироскопических приборов в авиацию. Так, уже в первую мировую войну русские военные самолеты были оборудованы гироскопическими указателями горизонта (рис.15).

Рис.15. Авиационный гирогоризонт 1914 г.

Волчок прибора приводился во вращение сжатым воздухом, подаваемым внутрь прибора через патрубок с и отсасываемым оттуда через трубку d. Волчок описываемого прибора упирался одним концом своей оси, так называемой шпилькой, в подпятник или топку N (рис.16).

Верхняя часть оси ААХ вращения волчка оканчивалась небольшим плоским диском а, по положению которого относительно прозрачного сферического колпака Ь, неизменно связанного с самолетом, и выдерживался горизонтальный полет.

Русская авиация не только не отставала от зарубежных стран в деле использования гироскопических приборов на самолете, но часто являлась пионером их внедрения.

Так, например, в 1917 г. русские летчики А.Н. Журавченко и Г.Н. Алехнович совершили на самолете "Илья Муромец" слепой полет, выдерживая прямолинейный курс в заданном направлении по гироскопическому указателю поворотов, о принципиальном устройстве которого будет сказано ниже. Этот прибор, разработанный П.П. Шиловским специально для авиации, позволил провести самолет по заранее намеченному курсу при полном отсутствии видимости земных ориентиров.

Рис.16. Схема, объясняющая принцип работы авиационного гирогоризонта 1914 г.: а-при горизонтальном полете; б-при наборе высоты

Работы советских ученых А.Н. Крылова, Б.В. Булгакова, С.С. Тихменева, Г.В. Коренева, А.Р. Бонина, Г.О. Фридлен-дера и многих других в содружестве с выдающимися конструкторами Е.Ф. Антиповым, Е.В. Ольманом, Р.Г. Чичикяном, А.И. Марковым и другими талантливыми инженерами обеспечили оснащение советской авиации высококачественными гироскопическими приборами.

В двадцатых годах текущего столетия в дополнение к указателю поворотов создаются авиационные гироскопические указатели, курса и горизонта, которые стали в настоящее время обязательными навигационными приборами самолета любого типа. В начале тридцатых годов советские конструкторы Д.А. Браславский, М.М. Качкачян и М.Г. Эйлькинд первыми в мире разработали, построили и испытали гиромагнитный компас, получивший в настоящее время широкое распространение в авиации всех стран мира.

Гироскопические приборы позволяют измерять углы, угловые скорости и ускорения при отклонении самолета от заданного направления.

Пользуясь гироскопическими приборами, определяют Линейные скорости и ускорения движения самолета. Наконец, они облегчают физический труд летчика, управляя полетом самолета автоматически.

7.2. Гироскопический тахометр

Как упоминалось в предыдущем параграфе, одним из первых гироскопических приборов, использованных в авиации, был прибор, указывающий повороты самолета вокруг вертикали, или, как говорят, в азимуте. Чтобы разобраться в его принципиальной сущности, представим себе ротор гироскопа, быстро вращающийся. вокруг оси АА1 в кардановом кольце ВК (рис.17). Кольцо ВК, в свою очередь, может вращаться совместно с ротором вокруг оси ВВ^ в корпусе прибора, жестко укрепленном на основании N.

Рис.17. Принципиальная схема гиротахометра

На продолжении оси АА1 к кардановому кольцу ВК прикреплен стержень D, заканчивающийся шаровым наконечником, с которым соединены концы спиральных пружин а и b. Вторые концы этих пружин закреплены на кронштейне L, смонтированном также (на основании N. Благодаря наличию пружин свобода вращени5 гироскопа вокруг оси BBt его подвеса становится частично ограниченной, так как при повороте гироскопа вокруг оси ВВ1, пружинь будут деформироваться, создавая тем самым усилие, стремящееся возвратить гироскоп в исходное нулевое положение.

Если основание N поворачивать вокруг оси СС, с угловой скоростью ω, то вместе с основанием с такой же угловой скоростью а начнет поворачиваться и гироскоп. При этом последний будет поставлен в условия одновременного движения сразу вокруг двух осей: АА1 и CC1 с угловыми скоростями Ω и ω. В этом случае гироскоп начнет вращаться вокруг оси ВВ1 стремясь совместить свою главную ось АА1 с осью CC1 вынужденного поворота.

Вместе с гироскопом вокруг оси В1, будет поворачиваться и стержень D, шаровой наконечник которого начнет воздействовать на пружины а и b. Одна из пружин при этом будет растягиваться на величину z, вторая - на столько же сжиматься. В результате указанной деформации возникнет сила F упругости пружин, которая будет стремиться возвратить гироскоп к нулевому положению. С увеличением угла поворота ξ гироскопа вокруг оси ВВ1 деформация z пружин будет возрастать увеличивая силу F их упругости.

Угол поворота гироскопа b вокруг оси ВВ1 является пропорциональным величине угловой скорости вынужденного поворота прибора, так как кинетический момент и коэффициент k в каждом приборе остаются величинами постоянными. Следовательно, по величине угла с помощью данного прибора можно измерять угловую скорость. Именно поэтому он получил название гироскопического тахометра. Так как гироскоп прибора имеет только две степени свободы, вокруг осей АА1 и ВВ1 его называют еще гиротахометром с двумя степенями свободы.

Соединяя гироскоп тахометра со стрелкой (рис.18) и снабжая корпус прибора шкалой с нанесенной на ней в соответствующем масштабе сеткой делений, получают возможность произвести непосредственную оценку величины угловой скорости φ. Для успокоения колебаний стрелки гироскопического тахометра последний снабжают специальным успокоителем. В качестве такого успокоителя широкое распространение получил пневматический демпфер, представляющий собой жестко укрепленный на корпусе прибора цилиндр Ц, внутри которого помещен поршень П, соединенный

рычагом с гироскопом. При колебаниях гироскопа, а следовательно и стрелки прибора, около оси ВВ, поршень будет перемещаться внутри цилиндра. Этому оказывает сопротивление воздух, сжимаемый в цилиндре и не успевающий выходить через отверстие L. Указанное сопротивление будет тем больше, чем с большей скоростью происходит перемещение поршня П внутри цилиндра Ц.

Устанавливая описанный гироскопический тахометр на самолете, получают возможность измерять угловые скорости его поворота около одной из собственных осей (рис.14).

Рис.18. Схема передачи поворота гиротахометра на шкалу прибора

Рис. 19. Схема установки гиротахометра на самолете

Большей частью гироскопические тахометры используются на самолете для фиксирования его поворотов вокруг вертикальной оси. В этом случае тахометр монтируется таким образом, чтобы ось BB1 его подвеса была совмещена с продольной осью Осхс самолета (рис. 19).

До тех пор пока самолет летит строго по заданному направлению, гироскоп гиротахометра вращается только вокруг своей главной оси

Гироскопические тахометры могут быть использованы для измерения угловых скоростей поворота самолета не только относительно его вертикальной оси, но и относительно его продольной и поперечной осей (рис.14). Для этого необходимо так установить гироскопический тахометр, чтобы его ось ОСх была совмещена при нулевом положении гироскопа (рис.18) с соответствующей осью Осус или Осл: с самолета.

7.3. Гироскопический указатель поворотов

Из рассмотренного выше можно сделать заключение о том, что для выдерживания полета самолета в заданном направлении не обязательно определять величину угловой скорости его поворота вокруг оси Oczc. Важно лишь получить указание о возникновении этой скорости и ее направлении. Вот почему в авиации гироскопическим тахометром часто пользуются не для количественного измерения угловых скоростей поворота самолета, а лишь для получения качественной информации о факте ее возникновения.

Рис. 20. Схема указателя поворотов

Конструкция гироскопического прибора в этом случае остается принципиально такой же, как и описанная выше. Однако прибор не имеет шкалы с делениями, которая заменена здесь диском с тремя марками (рис. 20); одной центральной, не имеющей обозначений, и двумя крайними: правой П и левой Л.

Одновременно прибор снабжен маятниковым креномером, выполненным в виде изогнутой по некоторому радиусу стеклянной трубки Т, внутри которой свободно перемещается шарик d.

Пользуясь гироскопическим указателем поворотов, летчики контролируют правильность выполнения виражей при разворотах самолета вокруг вертикали.

Учитывая, что при правильном вираже шарик, как и обычный маятник, должен устанавливаться по направлению равнодействующей двух сил: силы тяжести и центробежной силы инерции, - летчик, совершая разворот, может следить не только за положением стрелки гиротахометра, но и за положением шарика креномера. Вот почему указатель поворотов и завоевал одно из основных мест среди авиационных навигационных приборов.

Чтобы читатель мог составить себе представление о конструктивном выполнении авиационных гироскопических указателей поворотов, на рис.21 показана одна из современных моделей прибора с питанием от постоянного электрического тока напряжением 27 в.

7.4. Авиационный гироскоп направления

Несмотря на то, что гироскопический указатель поворотов позволяет выдерживать прямолинейный полет и совершать правильные развороты самолета, пользование одним этим прибором при выполнении слепого полета крайне затруднительно.

В самом деле, представим себе, что самолету было задано направление полета АВ (рис.21), по которому и совершалось его перемещение, начиная от пункта А. В силу тех или иных возмущений самолет в точке С начал отклоняться от заданного курса АВ, поворачиваясь вокруг вертикальной оси в направлении против часовой стрелки.

Рис.21. Общий вид авиационного указателя поворотов при снятой крышке

При наличии на самолете гироскопического указателя поворотов описываемый поворот будет сразу же зафиксирован прибором, стрелка которого отклонится от нулевой черты на шкале указателя. Однако летчик в момент нахождения самолета в точке С мог быть занят наблюдением показаний какого-либо другого контрольного прибора, число которых на приборной доске современного самолета достаточно велико. Может случиться так, что летчик обратит внимание на шкалу гироскопического указателя поворотов лишь только в точке D, когда самолет уже отклонится от заданного курса на некоторый угол Δα.

Как только пилот заметит по указателю поворотов вращение самолета, он сразу же прекратит это вращение и вновь будет выдерживать самолет в прямолинейном полете. Но теперь это движение уже не совпадет с заданным курсом А В, а произойдет в некотором новом направлении DE, составляющем с заданным курсом АВ угол Δα. По шкале указателя поворотов летчик не сможет определить величину угла Δα и, следовательно, не сможет устранить накопившуюся ошибку.

Вот почему выдерживание прямолинейного полета самолета по показаниям лишь одного гироскопического указателя поворотов требует непрерывного наблюдения за его стрелкой, что утомляет пилота. Для осуществления слепого полета необходимо иметь еще один прибор, который позволял бы летчику оценивать направление полета самолета по отношению к заданному курсу не в результате непрерывного наблюдения за показаниями прибора, а лишь по кратковременным взглядам на шкалу последнего. Именно таким прибором и является авиационный гироскоп направления.

Рис.22. Схема, объясняющая необходимость наличия на самолете гироскопа направления

Сущность устройства гироскопа направления может быть пояснена схемой (рис.23). Представим себе гироскоп с тремя степенями свободы, корпус которого жестко укреплен на самолете так, что его наружная ось СС1 подвеса перпендикулярна плоскости xcOQyc крыльев. В процессе горизонтального полета самолета наружная ось СС1 подвеса такого гироскопа будет совмещена с вертикалью 22. Если ротору гироскопа сообщить теперь вращение вокруг главной оси AA1 с достаточно большой угловой скоростью, то гироскоп, как известно, будет сохранять свою главную ось ААХ неподвижной в пространстве. Поэтому направление полета самолета можно оценивать величиной угла ак, называемого обычно углом компасного курса, образуемого продольной осью 0с; ес самолета с плоскостью АОС гироскопа.

Для удобства замера угла ак наружное кольцо НК гироскопа снабжают диском D с нанесенной на нем шкалой, разделенной по окружности на 360°, - а корпус прибора индексом L, остающимся неподвижным относительно самолета.

Нулевую черту, соединяющую деления 0 и 180° шкалы диска или так называемой картушки D, совмещают с плоскостью АОС гироскопа, в которой всегда находится его главная ось АА1. Поэтому в тех случаях, когда величина угла φ отклонения главной оси АА1 гироскопа от плоскости NOZ меридиана известна, посредством гироскопа может быть измерен и истинный курсовой угол а полета самолета, равный сумме двух углов.

Рис.23. Принципиальная схема гироскопа направления

Однако пользоваться подобным способом измерения истинного курсового угла α в течение более или менее продолжительного времени практически невозможно.

Свободный гироскоп, сохраняя свою главную ось неподвижной в пространстве, непрерывно отклоняется как от плоскости горизонта, так и от плоскости меридиана.

Это движение имеет место и в рассматриваемом случае, в результате чего главная ось АА1 будет непрерывно изменять свое положение по отношению к плоскости NOZ меридиана, вызывая тем самым и непрерывное изменение угла φ. Именно эта причина усложняет использование гироскопа с тремя степенями свободы для измерения истинного курсового угла а полета самолета.


Чтобы вызвать прецессионное движение гироскопа вокруг вертикали ZZ, (рис.80), необходимо создать внешний момент М, действующий на гироскоп относительно его внутренней оси подвеса ВВХ.

В большинстве своем авиационные гироскопы направления снабжаются еще так называемой задающей шкалой, пользуясь которой пилот устанавливает для памяти необходимый курсовой угол полета. Эта вторая задающая шкала ничем не связана с гироскопом. Она соединена лишь с корпусом прибора, относительно которого ее положение может устанавливаться произвольно поворотом одной из рукояток, размещенных на лицевой стороне прибора. В некоторых моделях авиационные гироскопы направления снабжаются дополнительно и маятниковым креномером, ясно видным на рис.25.

Наличие гироскопа направления избавляет летчика от необходимости непрерывно следить за стрелкой гироскопического указателя поворотов.

Однако силы трения, неизбежно существующие в опорах подвеса, неточности балансировки, люфты в подшипниках и целый ряд других причин, связанных с ошибками при изготовлении и регулировке прибора, обусловливают возникновение вредных моментов. Указанные моменты, носящие название возмущающих, действуя на гироскоп относительно его осей подвеса, и вызывают отклонение гироскопа направления от первоначально заданного положения. Существенным недостатком прибора является также то, что при отклонении в силу тех или иных возмущающих моментов главной оси AA1 гироскопа от плоскости меридиана NOZ прибор не возвратится в прежнее положение (даже после прекращения действия возмущающих моментов). Так как воздействие возмущающих моментов происходит непрерывно, отклонение простейших гироскопов направления от заданного положения совершается довольно быстро, примерно 5° за 15 мин. Поэтому гироскопом направления можно пользоваться в течение лишь непродолжительного времени: при виражах самолета, при преодолении облаков, туманностей, грозовых туч и т.п. В дальнейшем его показания должны быть исправлены по магнитному компасу.

Рис.26. Принципиальная схема устройства гиромагнитного компаса

Необходимость частой проверки показаний гироскопа направления заставляла приборостроителей усиленно искать путей, обеспечивающих неизменное сохранение главной оси гироскопа в плоскости меридиана. Решение этой задачи впервые в мире было найдено советскими конструкторами, создавшими принципиально новый гироскопический прибор, получивший название гиромагнитного компаса.


7.5. Авиационный гиромагнитный компас

Чтобы разобраться в принципе действия гиромагнитного компаса, представим себе гироскоп, на продолжении наружной оси СС1 подвеса которого (рис.26) расположена независимо подвешенная стрелка NS магнитного компаса, несущая на себе контактный движок r. На наружном кольце НК гироскопа смонтированы две изолированные контактные ламели b1 и b2. При отклонении главной оси АА1 от плоскости Nm0Z магнитного меридиана, с которой совмещена стрелка NS магнитного компаса, движок г придет в соприкосновение с одной из ламелей b1 и b2. В результате через одну из двух обмоток электромагнита ЭМ, неподвижно укрепленного на наружном кольце НК, пойдет электрический ток.

При включении в цепь электрического тока обмотки электромагнита ЭМ возникнет магнитный поток, который, воздействуя на якорек Я, укрепленный на оси внутреннего кольца ВК, создаст момент, стремящийся повернуть гироскоп вокруг оси BB1. Но, как известно, при воздействии на быстро вращающийся вокруг оси АА1 гироскоп моментом относительно одной из осей его подвеса возникает прецессионное движение вокруг второй оси. В данном случае прецессионное движение будет происходить вокруг оси СС1 до тех пор, пока главная ось ЛЛХ вновь не совместится с плоскостью Nm0Z магнитного меридиана.

В этот момент движок r выйдет из соприкосновения с контактной ламелью и прекратит питание электромагнита ЭМ, а следовательно, и воздействие на гироскоп внешнего момента. Такова в кратких чертах принципиальная сущность работы гиромагнитного компаса.


Рис. 27. Схема размещения на самолете агрегатов дистанционного гиромагнитного компаса

С целью устранения возможных недостатков магнитную стрелку на современных самолетах стремятся устанавливать на возможно более удаленном расстоянии от двигателей и кабины летчика (в концах крыльев и хвостовой части фюзеляжа).

Преимуществом прибора, получившего название дистанционного гиромагнитного компаса, является то, что на магнитную стрелку, смонтированную в хвостовой части фюзеляжа, действуют значительно меньшие возмущающие моменты, чем на размещенную непосредственно в корпусе гироскопической системы.

Поэтому вождение самолета по заданному курсу с помощью дистанционного гиромагнитного компаса будет осуществляться с большей точностью, чем при пользовании гиромагнитным компасом, стрелка которого смонтирована в непосредственной близости от гироскопа в одном общем корпусе.

Для передачи показаний гироскопа в кабину штурмана, а в некоторых случаях и на приборную доску летчика дистанционный гиромагнитный компас снабжается специальными повторителями П, аналогичными повторителям, применяемым в морском флоте.

Дистанционные гиромагнитные компасы, питаемые электрическим током, получили широкое распространение не только в авиации. Малые габариты, простота обслуживания и надежность в работе обеспечили его применение и на судах малого тоннажа.

Рис.28. Комплект дистанционного гиромагнитного компаса: 1 - гироскопический узел; 2 - магнитный компас; 3 - повторитель штурмана; 4 - повторитель летчика

На рис.29 показан комплект дистанционного гиромагнитного компаса, состоящего из гироскопа, магнитной системы и двух повторителей: для штурмана и для пилота.

7.6. Авиационный гироскопический горизонт

Так как самолет в воздухе может занимать любое положение по отношению к плоскостям горизонта и меридиана, то для выдерживания полета по заранее намеченному направлению необходимо сохранять не только его курс, но и горизонтальное положение. С этой целью современные самолеты оборудуются специальными гироскопическими приборами, главная ось которых сохраняет вертикальное направление. Однако установка главной оси гироскопа с тремя степенями свободы в начальный момент времени в вертикальном направлении еще не обеспечивает выдерживание горизонтального полета самолета.


Рис. 30. Схема прямолинейного полета в мировом пространстве и у земной поверхности

Действительно, если бы мы совершали полет по показаниям гироскопа, главная ось которого в момент старта была совмещена с радиусом Земли (рис.30), то наше движение было бы прямолинейным, но только по отношению к неподвижным звездам, а не к земной поверхности. На практике важно именно последнее, поэтому под прямолинейным горизонтальным полетом принято понимать перемещение самолета на постоянной высоте над земной поверхностью, т.е. по дуге окружности постоянного радиуса, равного сумме земного радиуса R и высоте полета h.

Таким образом, главная ось гироскопа, предназначенного для выдерживания полета в горизонтальном положении, должна быть неизменно совмещена с направлением истинной вертикали 03Z. Это условие может быть выполнено лишь при наличии в системе гироскопического прибора таких сил, которые создавали бы моменты, удерживающие главную ось гироскопа в совмещении с истинной вертикалью.

В авиационном гироскопическом горизонте, применявшемся на самолетах в 1914-1916 гг. в качестве такой удерживающей силы использовалась сила веса его ротора. Для уяснения принципа работы прибора обратимся к схеме рис.31. На ней, в отличие от действительной конструкции, ротор прибора изображен не опирающимся на острие, а подвешенным на штанге Ш, оканчивающейся шаровой опорой. Такое изменение схемы ни в коей мере не искажает принципа работы рассматриваемого прибора и сделано лишь с целью обеспечения большей наглядности при объяснении существа работы рассматриваемого гироскопического прибора.

Центр тяжести ротора смещен вниз по отношению к точке его подвеса. На схеме это смещение условно показано в виде шарового груза, центр которого смещен относительно точки подвеса вдоль главной оси АА1 гироскопа на расстояние. Условимся считать, что с центром шарового груза совмещен центр тяжести ротора гироскопического горизонта.

До тех пор пока главная ось АА1 будет сохранять вертикальное положение, сила G его веса проходит через точку подвеса гироскопа и поэтому никаких моментов относительно точки подвеса О, на него воздействующих, не создает. Вектор кинетического момента гироскопа JΩ, совмещенный с главной осью АА1 будет направлен по вертикали OZ. В результате по положению главной оси можно судить о направлении истинной вертикали.

Рис.31. Принципиальная схема устройства маятниковой гировертикали

Если же главная ось AA1 начнет отклоняться от вертикали OZ, то даже при незначительном угле наклона сила G начнет создавать относительно точки подвеса момент G, который будет тем больше, чем больше величина l’, являющаяся проекцией смещения l на горизонтальную плоскость. В рассматриваемом случае вектор момента Gl перпендикулярен плоскости чертежа и направлен из точки подвеса ротора в сторону читателя.

Под влиянием внешнего момента Gl гироскоп, как известно, начнет прецессионное движение, причем так, чтобы по кратчайшему направлению привести свою главную ось АА1 к совмещению с вектором внешнего момента Gl. Таким образом, главная ось АА1 и совмещенный с нею вектор кинетического момента начнут выходить из плоскости чертежа, двигаясь своим верхним концом в направлении на читателя.

Так как точка подвеса гироскопа остается неподвижной, то в результате рассматриваемого движения нижний конец главной оси, а следовательно, и шаровой груз будут отклоняться за плоскость чертежа. Таким образом, как только под влиянием момента Gl’ начнется прецессионное движение гироскопа, вместе с последним поворачивается около точки подвеса и вектор момента Gl.

Сказанное легко проследить, пользуясь схемой, приведенной на рис.32.

Рис.32. Схема, объясняющая работу маятниковой гировертикали

Сила G создаст относительно оси оу момент Gl’, благодаря чему главная ось АА1 гироскопа, а с ней вместе и вектор кинетического момента начнут двигаться к совмещению с вектором момента Gl. Но как только гироскоп повернется вокруг оси ох и его главная ось АА1 составит с плоскостью xoz хотя бы незначительный угол φ (рис.32, б), так сразу же точка а пересечения направления действия силы G с плоскостью хоу сместится с оси ох. Теперь она будет отстоять от оси ох на расстоянии 1x и от оси оу на расстоянии 1у. В связи с этим сила G веса гироскопа создаст моменты Gly и Glx относительно осей оу и ох.

Вектор суммарного момента Gl теперь уже не будет совмещен с осью оу и составит с ней некоторый угол а. Главная ось АА1 гироскопа, непрерывно движущаяся к совмещению с вектором момента Gl’ пойдет теперь к совмещению не с осью or/, а с направлением вектора суммарного момента Gl. Так как вместе с поворотом гироскопа будет вращаться вокруг оси oz и вектор момента Gl', все на больший угол а, удаляющийся от плоскости yoz, то и главная ось гироскопа, стремящаяся к совмещению с вектором Gl', будет непрерывно перемещаться вокруг оси oz, совершая около нее конусообразные движения. При этом угол рассогласования между осями АА1 и oz обычно настолько мал, что практически главную ось АА1 гироскопа можно считать совмещенной с истинной вертикалью oz.

Однако маятниковая гироскопическая вертикаль не получила распространения в авиации из-за больших ее размеров. Дело в том, что для непрерывного выдерживания главной оси маятниковой гировертикали в непосредственной близости от направления истинной вертикали необходим значительный по величине момент, создаваемый силой веса гироскопа.

С этой целью для обеспечения требуемой точности прибора приходится утяжелять ротор, что влечет за собой и увеличение общих размеров прибора. При малых же размерах ротора и малом его весе момент, возникающий при отклонении гироскопа от истинной вертикали, оказывается недостаточным для противодействия возмущения, порождающим ошибки маятниковой гироскопической вертикали.

Рис. 33. Принципиальная схема устройства гирогоризонта

По этим причинам маятниковая гировертикаль не могла быть использована в авиации, найдя себе применение только в морском флоте. В авиации для сохранения вертикального положения главной оси небольшого по размерам гироскопа применяются различные методы. На рис.33 приведена схема гироскопа с тремя степенями свободы, центр тяжести которого совмещен с точкой подвеса, а его главная ось ЛЛ, расположена вертикально. На гироскопической камере ВК, которая, как известно, выполняет роль внутреннего кольца подвеса, установлено два цилиндра из немагнитного материала. Эти цилиндры расположены взаимно-перпендикулярно, причем каждый из них установлен симметрично по отношению к соответствующим осям ВВ1 и CC1 подвеса гироскопа.

С обоих концов цилиндров располагаются катушки соленоидов N1, L1 и N2; L2, включаемые в сеть электрического тока посредством маятникового М, и М2, оси подвесов которых параллельны осям ВВ1 и CC1 гирокамеры. Предположим, что отклонение главной оси ЛЛ) гироскопа от направления истинной вертикали OZ произошло в результате поворота гироскопа вокруг оси CC1 в направлении, показанном стрелкой. При этом маятник М2, сохраняя отвесное положение, замкнет ламель K2, расположенную совместно со второй ламелью К1 на изолированном основании, укрепленном на корпусе гирокамеры.

Замыкая контактную ламель К2, маятник М2 включит ток в катушку L1 соленоида, расположенного перпендикулярно оси СС1. Воздействие электромагнитного поля соленоида на помещенный внутри цилиндра якорек Я вызовет перемещение последнего вдоль оси СС1 вправо. Вес Р якорька Я создаст на плече момент Мв = Рl, направление которого на схеме показано вектором, совпадающим с осью ВВ1.

Момент Рl вызовет прецессионное движение гироскопа вокруг оси СС1 в результате чего его главная ось AAl будет идти на совмещение с истинной вертикалью 0Z. Как видим, направление перемещения якорьков зависит от того, какую ламель замкнут соответствующие маятники М1 или М2, которые и управляют системой удерживания гироскопа в вертикальном положении, получившей название корректирующего устройства.

Корректирующие устройства гироскопических приборов выполняются в самых различных вариантах, с которыми читатель может познакомиться в литературе, указанной в конце книги.

Однако вне зависимости от их конструктивной разновидности принципиальная сущность корректирующих устройств остается одной и той же.

Маятники той или иной конструкции фиксируют отклонение главной оси гироскопа от направления истинной вертикали и включают в работу устройства, создающие внешние, воздействующие на гироскоп, моменты. Под воздействием этих моментов гироскоп получает прецессионное движение, в результате которого его главная ось и приходит к совмещению с истинной вертикалью.

Гироскопические приборы, оборудованные корректирующими устройствами для выдерживания их главной оси в вертикальном направлении, в отличие от маятниковых гироскопических вертикалей, получили название авиационных гироскопических горизонтов, пользуясь которыми летчики во время полета получают возможность фиксировать величины углов как продольного, так и поперечного крена самолета.

Часто в целях экономии места на приборной доске самолета, которая занята большим количеством приборов, авиационные гироскопические горизонты монтируют в одном корпусе с гироскопическим указателем поворотов. Такой комбинированный прибор (рис.34) совмещает гироскопический горизонт ГГ, гироскопический указатель поворотов УП и маятниковый креномер МК.


Рис.34. Комбинированный гирогоризонт

Для большей наглядности приведена фотография одновременно трех экземпляров одного и того же гироскопического комбинированного прибора. Каждый экземпляр с предварительно снятой защитной крышкой установлен под различным углом зрения к объективу, благодаря чему читатель может составить представление и о компановке прибора, и о его наружном виде со стороны шкалы.

7.7. Автоматический штурман

В связи с непрерывным ростом скорости и дальности беспосадочных полетов усложнилась работа по определению местоположения летящего самолета, который на протяжении большого участка пути совершает движение в условиях отсутствия видимости земных ориентиров. Возникла необходимость в приборе, автоматически вычисляющим пройденный самолетом путь.

Наличие гироскопа позволило создать такой прибор. Он был назван автоматическим штурманом, который непрерывно записывал пройденный самолетом путь (подобно автоматическому курсографу, регистрирующему направления движения корабля). Прообразом современных автоматических приборов, непрерывно регистрирующих на бумажной ленте курс корабля, самолета или любой другой подвижной платформы явился самопишущий магнитный компас, разработанный М.В. Ломоносовым еще в 1759 г. Отечественный навигационный полуавтомат курсограф был разработан В.Ю. Поляком в 1929 г. Позже решению этой задачи посвятили свой труд Н.А. Гриценко, В.А. Шефов, С.А. Кондратюк и многие другие советские специалисты.

В общих чертах сущность устройства автоматического штурмана может быть рассмотрена по схеме (рис.35). На планшете П закреплена карта с предстоящим маршрутом перелета. Над картой располагаются две взаимно-перпендикулярные кулисы Км и Кш, в прорезях которых установлен соединяющий их между собой ползунок Р, несущий карандаш, соприкасающийся острием с плоскостью карты.

Каждая кулиса заканчивается гайкой, связывающей их с ходовыми винтами ХВШ или ХВМ, приводимыми во вращение электродвигателями. С помощью электродвигателя ЭДМ вращают ходовой винт ХВМ, перемещающий кулису Км.

Рис.35. Принципиальная схема устройства автоштурмана

В результате ползунок Р приходит в движение вдоль меридиана карты, и карандаш начинает чертить след перемещения ползунка. Если ток подать на второй электродвигатель ЭДШ, карандаш начнет чертить линию перемещения ползунка вдоль параллели карты.

Для вычерчивания на карте линии проходимого самолетом пути необходимо перемещение ползунка производить со скоростью, пропорциональной скорости самолета. С этой целью в системе автоштурмана используется указатель скорости УС, показания которого передаются в счетно-решающее устройство СУ, автоматически подбирающее необходимое напряжение, подаваемое на электродвигатели ЭДМ и ЭДШ.

Однако показаний одного указателя скорости самолета еще недостаточно для работы автоматического штурмана. Дело в том, что в общем случае направление воздушной скорости v самолета может занимать любое положение по отношению к плоскости меридиана MS (рис.36, а). Поэтому для правильной записи на карте проходимого самолетом пути его воздушную скорость v раскладывают на две составляющие: uм - вдоль меридиана и - вдоль параллели.

Так как величины uм и uш зависят от курсового угла а, по которому самолет движется по отношению к плоскости меридиана, то для автоматического их определения в счетно-решающее устройство СУ автоштурмана непрерывно подаются показания гиромагнитного компаса ГМК.

В счетно-решающем устройстве, куда непрерывно подаются значения величин воздушной скорости u самолета и курсового угла а, происходит разделение скорости v на составляющие uм и uш

Рис.36. Схема, показывающая снос самолета с заданного курса под воздействием сил ветра

На величину скорости движения самолета относительно земной поверхности большое влияние оказывают ветры. Если скорость ветра, совпадает с воздушной скоростью самолета, то его суммарная (путевая) скорость относительно земной поверхности увеличивается. Когда воздушная скорость самолета и скорость ветра противоположны, путевая соответственно уменьшается. В общем случае скорость ветра vB порождает боковой снос самолета, вызывая его отклонение от заданного направления полета. В итоге путевая скорость vn самолета будет определяться геометрической суммой двух скоростей: воздушной скорости v самолета и скорости ветра uв (рис.36, б).

Проекции путевой скорости v" на направления вдоль меридиана un, м и вдоль параллели un, ш будут уже отличны от. проекций uм и uш на те же направления воздушной скорости v. При большом протяжении маршрута, так же как и при больших скоростях ветра ошибки записи пройденного пути вследствие сноса самолета могут достигать значительных размеров. Поэтому в автоштурманах предусматривается специальное устройство, так называемый задатчик скорости и направления ветра ЗВ, пользуясь которым штурман вручную вводит соответствующую поправку. Эта поправка суммируется в счетно-решающем устройстве СУ с показаниями указателя воздушной скорости УС и гиромагнитного компаса ГМК. В результате из счетно-решающего устройства на электродвигатели ЭДМ и ЭДШ подается напряжение, обеспечивающее перемещение кулис Ки и Кш строго в соответствии с путевыми скоростями самолета: уп м - вдоль меридиана и vn ш - вдоль параллели (рис.36, б).

Рис.37. Внешний вид планшета автоштурмана

Таков в самых кратких чертах принцип работы авиационного автоматического штурмана, внешний вид планшета которого показан на рис.37.


Страницы: 1, 2


© 2010 Рефераты