Рефераты

Тяжелые металлы

Тяжелые металлы

Введение

Понятие "тяжелые металлы" 2

Ванадий 6

Висмут 6

Железо 6

Кадмий 7

Кобальт 7

Марганец 8

Медь 9

Молибден 11

Мышьяк 11

Никель 12

Олово 13

Ртуть 14

Свинец 14

Серебро 17

Сурьма 17

Хром 18

Цинк 18

Список литературы 19

Понятие "тяжелые металлы".

Тяжелые металлы относятся к приоритетным загрязняющим веществам,

наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих

веществ, получил в последнее время значительное распространение. В

различных научных и прикладных работах авторы по-разному трактуют значение

этого понятия. В связи с этим количество элементов, относимых к группе

тяжелых металлов, изменяется в широких пределах. В качестве критериев

принадлежности используются многочисленные характеристики: атомная масса,

плотность, токсичность, распространенность в природной среде, степень

вовлеченности в природные и техногенные циклы. В некоторых случаях под

определение тяжелых металлов попадают элементы, относящиеся к хрупким

(например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды

и экологического мониторинга, на сегодняшний день к тяжелым металлам

относят более 40 металлов периодической системы Д.И. Менделеева с атомной

массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn,

Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых

металлов играют следующие условия: их высокая токсичность для живых

организмов в относительно низких концентрациях, а также способность к

биоаккумуляции и биомагнификации. Практически все металлы, попадающие под

это определение (за исключением свинца, ртути, кадмия и висмута,

биологическая роль которых на настоящий момент не ясна), активно участвуют

в биологических процессах, входят в состав многих ферментов. По

классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью

более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni,

Cd, Co, Sb, Sn, Bi, Hg.

Формально определению тяжелые металлы соответствует большое количество

элементов. Однако, по мнению исследователей, занятых практической

деятельностью, связанной с организацией наблюдений за состоянием и

загрязнением окружающей среды, соединения этих элементов далеко не

равнозначны как загрязняющие вещества. Поэтому во многих работах происходит

сужение рамок группы тяжелых металлов, в соответствии с критериями

приоритетности, обусловленными направлением и спецификой работ. Так, в

ставших уже классическими работах Ю.А. Израэля в перечне химических

веществ, подлежащих определению в природных средах на фоновых станциях в

биосферных заповедниках, в разделе тяжелые металлы поименованы Pb, Hg, Cd,

As. С другой стороны, согласно решению Целевой группы по выбросам тяжелых

металлов, работающей под эгидой Европейской Экономической Комиссии ООН и

занимающейся сбором и анализом информации о выбросах загрязняющих веществ в

европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым

металлам. По определению Н. Реймерса отдельно от тяжелых металлов стоят

благородные и редкие металлы, соответственно, остаются только Pb, Cu, Zn,

Ni, Cd, Co, Sb, Sn, Bi, Hg. В прикладных работах к числу тяжелых металлов

чаще всего добавляют Pt, Ag, W, Fe, Au, Mn.

Ионы металлов являются непременными компонентами природных водоемов. В

зависимости от условий среды (pH, окислительно-восстановительный потенциал,

наличие лигандов) они существуют в разных степенях окисления и входят в

состав разнообразных неорганических и металлорганических соединений,

которые могут быть истинно растворенными, коллоидно-дисперсными или входить

в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма

разнообразны, что связано с процессами гидролиза, гидролитической

полимеризации (образованием полиядерных гидроксокомплексов) и

комплексообразования с различными лигандами. Соответственно, как

каталитические свойства металлов, так и доступность для водных

микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти

комплексы являются одной из важнейших форм миграции элементов в природных

водах. Большинство органических комплексов образуются по хелатному циклу и

являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями

железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых

металлов, относительно хорошо растворимы в условиях нейтральной,

слабокислой и слабощелочной сред. Поэтому металлорганические комплексы

способны мигрировать в природных водах на весьма значительные расстояния.

Особенно важно это для маломинерализованных и в первую очередь

поверхностных вод, в которых образование других комплексов невозможно.

Для понимания факторов, которые регулируют концентрацию металла в

природных водах, их химическую реакционную способность, биологическую

доступность и токсичность, необходимо знать не только валовое содержание,

но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три

следствия:

1. может происходить увеличение суммарной концентрации ионов металла за

счет перехода его в раствор из донных отложений;

2. мембранная проницаемость комплексных ионов может существенно отличаться

от проницаемости гидратированных ионов;

3. токсичность металла в результате комплексообразования может сильно

измениться.

Так, хелатные формы Cu, Cd, Hg менее токсичны, нежели свободные ионы.

Для понимания факторов, которые регулируют концентрацию металла в природных

водах, их химическую реакционную способность, биологическую доступность и

токсичность, необходимо знать не только валовое содержание, но и долю

связанных и свободных форм [34].

Источниками загрязнения вод тяжелыми металлами служат сточные воды

гальванических цехов, предприятий горнодобывающей, черной и цветной

металлургии, машиностроительных заводов. Тяжелые металлы входят в состав

удобрений и пестицидов и могут попадать в водоемы вместе со стоком с

сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано

с другими видами загрязнения, например, с закислением. Выпадение кислотных

осадков способствует снижению значения рН и переходу металлов из

сорбированного на минеральных и органических веществах состояния в

свободное.

Прежде всего представляют интерес те металлы, которые в наибольшей степени

загрязняют атмосферу ввиду использования их в значительных объемах в

производственной деятельности и в результате накопления во внешней среде

представляют серьезную опасность с точки зрения их биологической активности

и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут,

кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и

мышьяк.

Биогеохимические свойства тяжелых металлов

|Свойство |.Cd.|.Co.|.Cu.|.Hg.|.Ni.|.Pb.|.Zn .|

|Биохимическая активность |В |В |В |В |В |В |В |

|Токсичность |В |У |У |В |У |В |У |

|Канцерогенность |— |В |— |— |В |— |— |

|Обогащение аэрозолей |В |Н |В |В |Н |В |В |

|Минеральная форма |В |В |Н |В |Н |В |Н |

|распространения | | | | | | | |

|Органическая форма |В |В |В |В |В |В |В |

|распространения | | | | | | | |

|Подвижность |В |Н |У |В |Н |В |У |

|Тенденция к |В |В |У |В |В |В |У |

|биоконцентрированию | | | | | | | |

|Эффективность накопления |В |У |В |В |У |В |В |

|Комплексообразующая |У |Н |В |У |Н |Н |В |

|способность | | | | | | | |

|Склонность к гидролизу |У |Н |В |У |У |У |В |

|Растворимость соединений |В |Н |В |В |Н |В |В |

|Время жизни |В |В |В |Н |В |Н |В |

В — высокая, У — умеренная, Н — низкая

10 наиболее загрязненных городов бывшего СССР.

Металлы приведены в порядке убывания уровня приоритетности для данного

города.

|1. Рудная Пристань (Приморский |свинец, цинк, медь, марганец+ванадий,|

|край) |марганец. |

|2. Белово (Кемеровская область) |цинк, свинец, медь, никель. |

|3. Ревда (Свердловская область) |медь, цинк, свинец. |

|4. Магнитогорск |никель, цинк, свинец. |

|5. Глубокое (Белоруссия) |медь, свинец, цинк. |

|6. Усть-Каменогорск (Казахстан) |цинк, медь, никель. |

|7. Дальнегорск (Приморский край) |свинец, цинк. |

|8. Мончегорск (Мурманская |никель. |

|область) | |

|9. Алаверди (Армения) |медь, никель, свинец. |

|10. Константиновка (Украина, |свинец, ртуть. |

|Донецкая обл) | |

Ванадий

Ванадий находится преимущественно в рассеянном состоянии и

обнаруживается в железных рудах, нефтях, асфальтах, битумах, горючих

сланцах, углях и др. Одним из главных источников загрязнения природных вод

ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек

0.2 - 4.5 мкг/дм3, в морской воде - в среднем 2 мкг/дм3

.

В воде образует устойчивые анионные комплексы (V4O12)4- и (V10O26)6-. В

миграции ванадия существенна роль растворенных комплексных соединений его с

органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДКв

ванадия составляет 0.1 мг/дм3 (лимитирующий показатель вредности —

санитарно-токсикологический), ПДКвр - 0.001 мг/дм3.

Висмут

Естественными источниками поступления висмута в природные воды являются

процессы выщелачивания висмутсодержащих минералов. Источником поступления в

природные воды могут быть также сточные воды фармацевтических и парфюмерных

производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых

концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и

составляет 20 мкг/дм3, в морских водах - 0.02 мкг/дм3. ПДКв составляет 0.1

мг/дм3

Железо

Главными источниками соединений железа в поверхностных водах являются

процессы химического выветривания горных пород, сопровождающиеся их

механическим разрушением и растворением. В процессе взаимодействия с

содержащимися в природных водах минеральными и органическими веществами

образуется сложный комплекс соединений железа, находящихся в воде в

растворенном, коллоидном и взвешенном состоянии. Значительные количества

железа поступают с подземным стоком и со сточными водами предприятий

металлургической, металлообрабатывающей, текстильной, лакокрасочной

промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН, Eh и в

некоторой степени от температуры. В рутинном анализе во взвешенную форму

выделяют частицы с размером более 0.45 мк. Она представляет собой

преимущественно железосодержащие минералы, гидрат оксида железа и

соединения железа, сорбированные на взвесях. Истинно растворенную и

коллоидную форму обычно рассматривают совместно. Растворенное железо

представлено соединениями, находящимися в ионной форме, в виде

гидроксокомплекса и комплексов с растворенными неорганическими и

органическими веществами природных вод. В ионной форме мигрирует главным

образом Fe(II), а Fe(III) в отсутствие комплексообразующих веществне может

в значительных количествах находиться в растворенном состоянии.

Железо обнаруживается в основном в водах с низкими значениями Eh.

В результате химического и биохимического (при участии железобактерий)

окисления Fe(II) переходит в Fe(III), который, гидролизуясь, выпадает в

осадок в виде Fe(OH)3. Как для Fе(II), так и для Fe(III) характерна

склонность к образованию гидроксокомплексов типа [Fe(OH)2]+, [Fe2(OH)2]4+,

[Fe(OH)3]+, [Fe2(OH)3]3+, [Fe(OH)3]- и других, сосуществующих в растворе в

разных концентрациях в зависимости от рН и в целом определяющих состояние

системы железо-гидроксил. Основной формой нахождения Fe(III) в

поверхностных водах являются комплексные соединения его с растворенными

неорганическими и органическими соединениями, главным образом гумусовыми

веществами. При рН = 8.0 основной формой является Fe(OH)3 .Коллоидная форма

железа наименее изучена, она представляет собой гидрат оксида железа

Fe(OH)3 и комплексы с органическими веществами.

Содержание железа в поверхностных водах суши составляет десятые доли

миллиграмма, вблизи болот - единицы миллиграммов. Повышенное содержание

железа наблюдается в болотных водах, в которых оно находится в виде

комплексов с солями гуминовых кислот - гуматами. Наибольшие концентрации

железа (до нескольких десятков и сотен миллиграммов в 1 дм3) наблюдаются в

подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени

влияет на интенсивность развития фитопланктона и качественный состав

микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в

водоемах с высокой биологической продуктивностью в период летней и зимней

стагнации заметно увеличение концентрации железа в придонных слоях воды.

Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается

окислением Fe(II) в Fе(III) и выпадением последнего в виде Fe(OH)3.

Содержание железа в воде выше 1-2 мг Fe/л значительно ухудшает

органолептические свойства, придавая ей неприятный вяжущий вкус, и делает

воду малопригодной для использования в технических целях. ПДКв железа

составляет 0.3 мг Fe/дм3 (лимитирующий показатель вредности —

органолептический), ПДКвр для железа - 0.1 мг/дм3

Кадмий

В природные воды поступает при выщелачивании почв, полиметаллических и

медных руд, в результате разложения водных организмов, способных его

накапливать. Соединения кадмия выносятся в поверхностные воды со сточными

водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда

химических предприятий (производство серной кислоты), гальванического

производства, а также с шахтными водами. Понижение концентрации

растворенных соединений кадмия происходит за счет процессов сорбции,

выпадения в осадок гидроксида и карбоната кадмия и потребления их водными

организмами.

Растворенные формы кадмия в природных водах представляют собой главным

образом минеральные и органо-минеральные комплексы. Основной взвешенной

формой кадмия являются его сорбированные соединения. Значительная часть

кадмия может мигрировать в составе клеток гидробионтов.

В речных незагрязненных и слабозагрязненных водах кадмий содержится в

субмикрограммовых концентрациях, в загрязненных и сточных водах

концентрация кадмия может достигать десятков микрограммов в 1 дм3.

Соединения кадмия играют важную роль в процессе жизнедеятельности

животных и человека. В повышенных концентрациях токсичен, особенно в

сочетании с другими токсичными веществами.

ПДКв составляет 0.001 мг/дм3, ПДКвр — 0.0005 мг/дм3 (лимитирующий

признак вредности — токсикологический).

Кобальт

В природные воды соединения кобальта попадают в результате процессов

выщелачивания их из медноколчедановых и других руд, из почв при разложении

организмов и растений, а также со сточными водами металлургических,

металлообрабатывающих и химических заводов. Некоторые количества кобальта

поступают из почв в результате разложения растительных и животных

организмов.

Соединения кобальта в природных водах находятся в растворенном и

взвешенном состоянии, количественное соотношение между которыми

определяется химическим составом воды, температурой и значениями рН.

Растворенные формы представлены в основном комплексными соединениями, в

т.ч. с органическими веществами природных вод. Соединения двухвалентного

кобальта наиболее характерны для поверхностных вод. В присутствии

окислителей возможно существование в заметных концентрациях трехвалентного

кобальта.

Кобальт относится к числу биологически активных элементов и всегда

содержится в организме животных и в растениях. С недостаточным содержанием

его в почвах связано недостаточное содержание кобальта в растениях, что

способствует развитию малокровия у животных (таежно-лесная нечерноземная

зона). Входя в состав витамина В12, кобальт весьма активно влияет на

поступление азотистых веществ, увеличение содержания хлорофилла и

аскорбиновой кислоты, активизирует биосинтез и повышает содержание

белкового азота в растениях. Вместе с тем повышенные концентрации

соединений кобальта являются токсичными.

В речных незагрязненных и слабозагрязненных водах его содержание

колеблется от десятых до тысячных долей миллиграмма в 1 дм3, среднее

содержание в морской воде 0.5 мкг/дм3. ПДКв составляет 0.1 мг/дм3, ПДКвр

0.01 мг/дм3.

Марганец

В поверхностные воды марганец поступает в результате выщелачивания

железомарганцевых руд и других минералов, содержащих марганец (пиролюзит,

псиломелан, браунит, манганит, черная охра). Значительные количества

марганца поступают в процессе разложения водных животных и растительных

организмов, особенно сине-зеленых, диатомовых водорослей и высших водных

растений. Соединения марганца выносятся в водоемы со сточными водами

марганцевых обогатительных фабрик, металлургических заводов, предприятий

химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в

результате окисления Mn(II) до MnO2 и других высоковалентных оксидов,

выпадающих в осадок. Основные параметры, определяющие реакцию окисления, -

концентрация растворенного кислорода, величина рН и температура.

Концентрация растворенных соединений марганца понижается вследствие

утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах -

взвеси, состав которых определяется в свою очередь составом пород,

дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и

сорбированные соединения марганца. Существенное значение в миграции

марганца в растворенной и коллоидной формах имеют органические вещества и

процессы комплексообразования марганца с неорганическими и органическими

лигандами. Mn(II) образует растворимые комплексы с бикарбонатами и

сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные

соединения Mn(II) с органическими веществами обычно менее прочны, чем с

другими переходными металлами. К ним относятся соединения с аминами,

органическими кислотами, аминокислотами и гумусовыми веществами. Mn(III) в

повышенных концентрациях может находиться в растворенном состоянии только в

присутствиии сильных комплексообразователей, Mn(YII) в природных водах не

встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160

мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в

подземных - n.102 - n.103 мкг/дм3.

Концентрация марганца в поверхностных водах подвержена сезонным

колебаниям.

Факторами, определяющими изменения концентраций марганца, являются

соотношение между поверхностным и подземным стоком, интенсивность

потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов

и высшей водной растительности, а также процессы осаждения его на дно

водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма

велика. Марганец способствует утилизации CO2 растениями, чем повышает

интенсивность фотосинтеза, участвует в процессах восстановления нитратов и

ассимиляции азота растениями. Марганец способствует переходу активного

Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост

организмов и т.д. Важная экологическая и физиологическая роль марганца

вызывает необходимость изучения и распределения марганца в природных водах.

Для водоемов санитарно-бытового использования установлена ПДКв (по иону

марганца), равная 0.1 мг/дм3.

Ниже представлены карты распределения средних концентраций металлов:

марганца, меди, никеля и свинца, построенные по данным наблюдений за 1989 -

1993 гг. в 123 городах. Использование более поздних данных предполагается

нецелесообразным, поскольку в связи с сокращением производства значительно

снизились концентрации взвешенных веществ и соответственно, металлов.

Влияние на здоровье. Многие металлы являются составляющей пыли и оказывают

существенное влияние на здоровье.

Марганец поступает в атмосферу от выбросов предприятий черной металлургии

(60% всех выбросов марганца), машиностроения и металлообработки (23%),

цветной металлургии (9%), многочисленных мелких источников, например, от

сварочных работ.

Высокие концентрации марганца приводят к появлению нейротоксических

эффектов, прогрессирующего поражения центральной нервной системы,

пневмонии. Самые высокие концентрации марганца (0,57 - 0,66 мкг/м3)

наблюдаются в крупных центрах металлургии: Липецке и Череповце, а также в

Магадане. Больше всего городов с высокими концентрациями Mn (0,23 - 0,69

мкг/м3) сосредоточено на Кольском полуострове: Заполярный, Кандалакша,

Мончегорск, Оленегорск (см. карту).

За 1991 - 1994 гг. выбросы марганца от промышленных источников снизились на

62%, средние концентрации – на 48%.

Медь

Медь - один из важнейших микроэлементов. Физиологическая активность

меди связана главным образом с включением ее в состав активных центров

окислительно-восстановительных ферментов. Недостаточное содержание меди в

почвах отрицательно влияет на синтез белков, жиров и витаминов и

способствует бесплодию растительных организмов. Медь участвует в процессе

фотосинтеза и влияет на усвоение азота растениями. Вместе с тем, избыточные

концентрации меди оказывают неблагоприятное воздействие на растительные и

животные организмы.

Содержание меди в природных пресных водах колеблется от 2 до 30

мкг/дм3, в морских водах - от 0.5 до 3.5 мкг/дм3. Повышенные концентрации

меди (до нескольких граммов в литре) характерны для кислых рудничных вод.

В природных водах наиболее часто встречаются соединения Cu(II). Из

соединений Cu(I) наиболее распространены труднорастворимые в воде Cu2O,

Cu2S, CuCl. При наличии в водной среде лигандов наряду с равновесием

диссоциации гидроксида необходимо учитывать образование различных

комплексных форм, находящихся в равновесии с акваионами металла.

Основным источником поступления меди в природные воды являются сточные

воды предприятий химической, металлургической промышленности, шахтные воды,

альдегидные реагенты, используемые для уничтожения водорослей. Медь может

появляться в результате коррозии медных трубопроводов и других сооружений,

используемых в системах водоснабжения. В подземных водах содержание меди

обусловлено взаимодействием воды с горными породами, содержащими ее

(халькопирит, халькозин, ковеллин, борнит, малахит, азурит, хризаколла,

бротантин).

Предельно допустимая концентрация меди в воде водоемов санитарно-

бытового водопользования составляет 0.1 мг/дм3 (лимитирующий признак

вредности — общесанитарный), в воде рыбохозяйственных водоемов - 0.001

мг/дм3.

|Город |M |

|Норильск |2382,3 |

|Ревда |1162,9 |

|Мончегорск |933,7 |

|Красноуральс|653,0 |

|к | |

|Кольчугино |140,1 |

|Никель |81,8 |

|Заполярный |81,0 |

Выбросы М (тыс.т/год) оксида меди и среднегодовые концентрации q

(мкг/м3) меди.

Медь поступает в воздух с выбросами металлургических производств. В

выбросах твердых веществ она содержится в основном в виде соединений,

преимущественно оксида меди.

На долю предприятий цветной металлургии приходится 98,7 % всех

антропогенных выбросов этого металла, из них 71% осуществляется

предприятиями концерна “Норильский никель”, расположенными в Заполярном и

Никеле, Мончегорске и Норильске, а еще примерно 25% выбросов меди

осуществляются в Ревде, Красноуральске, Кольчугино и в других.

Высокие концентрации меди приводят к интоксикации, анемии и заболеванию

гепатитом.

Как видно из карты, самые высокие концентрации меди отмечены в городах

Липецк и Рудная Пристань. Повышены также концентрации меди в городах

Кольского полуострова, в Заполярном, Мончегорске, Никеле, Оленегорске, а

также в Норильске.

Выбросы меди от промышленных источников снизились на 34%, средние

концентрации – на 42%.

Молибден

Соединения молибдена попадают в поверхностные воды в результате

выщелачивания их из экзогенных минералов, содержащих молибден. Молибден

попадает в водоемы также со сточными водами обогатительных фабрик,

предприятий цветной металлургии. Понижение концентраций соединений

молибдена происходит в результате выпадения в осадок труднорастворимых

соединений, процессов адсорбции минеральными взвесями и потребления

растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО42-.

Весьма вероятно существование его в виде органоминеральных комплексов.

Возможность некоторого накопления в коллоидном состоянии вытекает из того

факта, что продукты окисления молибденита представляют рыхлые

тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2.1 до 10.6

мкг/дм3. В морской воде содержится в среднем 10 мкг/дм3 молибдена.

В малых количествах молибден необходим для нормального развития

растительных и животных организмов. Молибден входит в состав фермента

ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном

количестве, что вызывает отрицательные реакции организма. В повышенных

концентрациях молибден вреден. При избытке молибдена нарушается обмен

веществ.

Предельно допустимая концентрация молибдена в водоемах санитарно-

бытового использования составляет 0.25 мг/дм3.

Мышьяк

В природные воды мышьяк поступает из минеральных источников, районов

мышьяковистого оруднения (мышьяковый колчедан, реальгар, аурипигмент), а

также из зон окисления пород полиметаллического, медно-кобальтового и

вольфрамового типов. Некоторое количество мышьяка поступает из почв, а

также в результате разложения растительных и животных организмов.

Потребление мышьяка водными организмами является одной из причин понижения

концентрации его в воде, наиболее отчетливо проявляющегося в период

интенсивного развития планктона.

Значительные количества мышьяка поступают в водные объекты со сточными

водами обогатительных фабрик, отходами производства красителей, кожевенных

заводов и предприятий, производящих пестициды, а также с

сельскохозяйственных угодий, на которых применяются пестициды.

В природных водах соединения мышьяка находятся в растворенном и

взвешенном состоянии, соотношение между которыми определяется химическим

составом воды и значениями рН. В растворенной форме мышьяк встречается в

трех- и пятивалентной форме, главным образом в виде анионов.

В речных незагрязненных водах мышьяк находится обычно в микрограммовых

концентрациях. В минеральных водах его концентрация может достигать

нескольких миллиграммов в 1 дм3, в морских водах в среднем содержится 3

мкг/дм3, в подземных - встречается в концентрациях n.105 мкг/дм3.

Соединения мышьяка в повышенных концентрациях являются токсичными для

организма животных и человека: они тормозят окислительные процессы,

угнетают снабжение кислородом органов и тканей.

ПДКв мышьяка составляет 0.05 мг/дм3 (лимитирующий показатель вредности

— санитарно-токсикологический) и ПДКвр - 0.05 мг/дм3.

Никель

Присутствие никеля в природных водах обусловлено составом пород, через

которые проходит вода: он обнаруживается в местах месторождений сульфидных

медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из

растительных и животных организмов при их распаде. Повышенное по сравнению

с другими типами водорослей содержание никеля обнаружено в сине-зеленых

водорослях. Соединения никеля в водные объекты поступают также со сточными

водами цехов никелирования, заводов синтетического каучука, никелевых

обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание

ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких

соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении

значений рН), за счет потребления его водными организмами и процессов

адсорбции.

В поверхностных водах соединения никеля находятся в растворенном,

взвешенном и коллоидном состоянии, количественное соотношение между

которыми зависит от состава воды, температуры и значений рН. Сорбентами

соединений никеля могут быть гидроксид железа, органические вещества,

высокодисперсный карбонат кальция, глины. Растворенные формы представляют

собой главным образом комплексные ионы, наиболее часто с аминокислотами,

гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса.

Наиболее распространены в природных водах соединения никеля, в которых он

находится в степени окисления +2. Соединения Ni3+ образуются обычно в

щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь

катализаторами. Повышенное его содержание оказывает специфическое действие

на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных

элементов. Он способен вызывать респираторные заболевания. Считается, что

свободные ионы никеля (Ni2+) примерно в 2 раза более токсичны, чем его

комплексные соединения.

В речных незагрязненных и слабозагрязненных водах концентрация никеля

колеблется обычно от 0.8 до 10 мкг/дм3; в загрязненных она составляет

несколько десятков микрограммов в 1 дм3. Средняя концентрация никеля в

морской воде 2 мкг/дм3, в подземных водах - n.103 мкг/дм3. В подземных

водах, омывающих никельсодержащие горные породы, концентрация никеля иногда

возрастает до 20 мг/дм3.

Содержание никеля в водных объектах лимитируется: ПДКв составляет 0.1

мг/дм3 (лимитирующий признак вредности — общесанитарный), ПДКвр — 0.01

мг/дм3 (лимитирующий признак вредности — токсикологический).

Никель поступает в атмосферу от предприятий цветной металлургии, на долю

которых приходится 97% всех выбросов никеля, из них 89% на долю предприятий

концерна “Норильский никель”, расположенных в Заполярном и Никеле,

Мончегорске и Норильске.

Повышенное содержание никеля в окружающей среде приводит к появлению

эндемических заболеваний, бронхиального рака. Соединения никеля относят к 1

группе канцерогенов.

На карте видно несколько точек с высокими средними концентрациями никеля в

местах расположения концерна Норильский никель: Апатиты, Кандалакша,

Мончегорск, Оленегорск.

Выбросы никеля от промышленных предприятий снизились на 28%, средние

концентрации – на 35%.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м3) никеля.

Олово

В природные воды поступает в результате процессов выщелачивания

оловосодержащих минералов (касситерит, станнин), а также со сточными водами

различных производств (крашение тканей, синтез органических красок,

производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в

субмикрограммовых концентрациях. В подземных водах его концентрация

достигает единиц микрограммов в 1 дм3. ПДКв составляет 2 мг/дм3.

Ртуть

В поверхностные воды соединения ртути могут поступать в результате

выщелачивания пород в районе ртутных месторождений (киноварь,

метациннабарит, ливингстонит), в процессе разложения водных организмов,

накапливающих ртуть. Значительные количества поступают в водные объекты со

сточными водами предприятий, производящих красители, пестициды,

фармацевтические препараты, некоторые взрывчатые вещества. Тепловые

электростанции, работающие на угле, выбрасывают в атмосферу значительные

количества соединений ртути, которые в результате мокрых и сухих выпадений

попадают в водные объекты.

Понижение концентрации растворенных соединений ртути происходит в

результате извлечения их многими морскими и пресноводными организмами,

обладающими способностью накапливать ее в концентрациях, во много раз

превышающих содержание ее в воде, а также процессов адсорбции взвешенными

веществами и донными отложениями.

В поверхностных водах соединения ртути находятся в растворенном и

взвешенном состоянии. Соотношение между ними зависит от химического состава

воды и значений рН. Взвешенная ртуть представляет собой сорбированые

соединения ртути. Растворенными формами являются недиссоциированные

молекулы, комплексные органические и минеральные соединения. В воде водных

объектов ртуть может находиться в виде метилртутных соединений.

Содержание ртути в речных незагрязненных, слабозагрязненных водах

составляет несколько десятых долей микрограмма в 1 дм3, средняя

концентрация в морской воде 0.03 мкг/дм3, в подземных водах 1-3 мкг/дм3.

Соединения ртути высоко токсичны, они поражают нервную систему

человека, вызывают изменения со стороны слизистой оболочки, нарушение

двигательной функции и секреции желудочно-кишечного тракта, изменения в

крови и др. Бактериальные процессы метилирования направлены на образование

метилртутных соединений, которые во много раз токсичнее минеральных солей

ртути. Метилртутные соединения накапливаются в рыбе и могут попадать в

организм человека.

ПДКв ртути составляет 0.0005 мг/дм3 (лимитирующий признак вредности —

санитарно-токсикологический), ПДКвр 0.0001 мг/дм3.

Свинец

Естественными источниками поступления свинца в поверхностные воды

являются процессы растворения эндогенных (галенит) и экзогенных (англезит,

церуссит и др.) минералов. Значительное повышение содержания свинца в

окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием

углей, применением тетраэтилсвинца в качестве антидетонатора в моторном

топливе, с выносом в водные объекты со сточными водами рудообогатительных

фабрик, некоторых металлургических заводов, химических производств, шахт и

т.д. Существенными факторами понижения концентрации свинца в воде является

адсорбция его взвешенными веществами и осаждение с ними в донные отложения.

В числе других металлов свинец извлекается и накапливается гидробионтами.

Свинец находится в природных водах в растворенном и взвешенном

(сорбированном) состоянии. В растворенной форме встречается в виде

минеральных и органоминеральных комплексов, а также простых ионов, в

нерастворимой - главным образом в виде сульфидов, сульфатов и карбонатов.

В речных водах концентрация свинца колеблется от десятых долей до

единиц микрограммов в 1 дм3. Даже в воде водных объектов, прилегающих к

районам полиметаллических руд, концентрация его редко достигает десятков

миллиграммов в 1 дм3. Лишь в хлоридных термальных водах концентрация свинца

иногда достигает нескольких миллиграммов в 1 дм3.

Лимитирующий показатель вредности свинца - санитарно-токсилогический.

ПДКв свинца составляет 0.03 мг/дм3, ПДКвр - 0.1 мг/дм3.

Свинец содержится в выбросах предприятиями металлургии, металлообработки,

электротехники, нефтехимии и автотранспорта.

Влияние свинца на здоровье происходит при вдыхании воздуха, содержащего

свинец, и поступлении свинца с пищей, водой, на пылевых частицах. Свинец

накапливается в теле, в костях и поверхностных тканях. Свинец влияет на

почки, печень, нервную систему и органы кровообразования. Пожилые и дети

особенно чувствительны даже к низким дозам свинца.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м3) свинца.

За семь лет выбросы свинца от промышленных источников снизились на 60%

вследствие сокращения производства и закрытия многих предприятий. Резкое

снижение промышленных выбросов не сопровождается снижением выбросов

автотранспорта. Средние концентрации свинца снизились только на 41%.

Различие в степени снижения выбросов и концентраций свинца можно объяснить

неполным учетом выбросов от автомобилей в предыдущие годы; в настоящее

время увеличилось количество автомобилей и интенсивность их движения.

Свинцовая интоксикация

В настоящее время свинец занимает первое место среди причин

промышленных отравлений. Это вызвано широким применением его в различных

отраслях промышленности. Воздействию свинца подвергаются рабочие,

добывающие свинцовую руду, на

свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в

типографиях, при изготовлении хрустального стекла или керамических изделий,

этилированного бензина, свинцовых красок и др. Загрязнение свинцом

атмосферного воздуха, почвы и воды в окресности таких производств, а также

вблизи крупных автомобильных дорог создает угрозу поражения свинцом

населения, проживающего в этих районах, и прежде всего детей, которые более

чувствительны к воздействию тяжелых металлов.

С сожалением надо отметить, что в России отсутствует государственная

политика по правовому, нормативному и экономическому регулированию влияния

свинца на состояние окружающей среды и здоровье населения, по снижению

выбросов (сбросов, отходов) свинца и его соединений в окружающую среду,

полному прекращению производства свинецсодержащих бензинов.

Вследствие чрезвычайно неудовлетворительной просветительной работы по

разъяснению населению степени опасности воздействия тяжелых металлов на

организм человека, в России не снижается, а постепенно увеличивается

численность контингентов, имеющих профессиональный контакт со свинцом.

Случаи хронической свинцовой интоксикации зафиксированы в 14 отраслях

промышленности России. Ведущими являются электротехническая промышленность

(производство аккумуляторов), приборостроение, полиграфия и цветная

металлургия, в них интоксикация обусловлена превышением в 20 и более раз

предельно допустимой концентрации (ПДК) свинца в воздухе рабочей зоны.

Значительным источником свинца являются автомобильные выхлопные газы,

так как половина России все еще использует этилированный бензин. Однако

металлургические заводы, в частности медеплавильные, остаются главным

источником загрязнений окружающей среды. И здесь есть свои лидеры. На

территории Свердловской области находятся 3 самых крупных источника

выбросов свинца в стране: в городах Красноуральск, Кировград и Ревда.

Дымовые трубы Красноуральского медеплавильного завода, построенного еще

в годы сталинской индустриализации и использующего оборудование 1932 года,

ежегодно извергают на 34-тысячный город 150 -170 тонн свинца, покрывая все

и вся свинцовой пылью.

Концентрация свинца в почве Красноуральска варьируется от 42,9 до 790,8

мг/кг при предельно допустимой концентрации (ПДК)= 130 мк/кг. Пробы воды в

водопроводе соседнего пос. Октябрьский, питаемого подземным водоисточником,

фиксировали превышение ПДК до двух раз.

Загрязнение окружающей среды свинцом оказывает влияние на состояние

здоровья людей. Воздействие свинца нарушает женскую и мужскую

репродуктивную систему. Для женщин беременных и детородного возраста

повышенные уровни свинца в крови представляют особую опасность, так как под

действием свинца нарушается менструальная функция, чаще бывают

преждевременные роды, выкидыши и смерть плода вследствие проникновения

свинца через плацентарный барьер. У новорожденных детей высока смертность.

Отравление свинцом чрезвычайно опасно для маленьких детей - он

действует на развитие мозга и нервной системы. Проведенное тестирование 165

красноуральских детей от 4 лет выявило существенную задержку психического

развития у 75,7%, а у 6,8% обследованных детей обнаружена умственная

отсталость, включая олигофрению.

Дети дошкольного возраста наиболее восприимчивы к вредному воздействию

свинца, поскольку их нервная система находится в стадии формирования. Даже

при низких дозах свинцовое отравление вызывает снижение интеллектуального

развития, внимания и умения сосредоточиться, отставание в чтении, ведет к

развитию агрессивности, гиперактивности и другим проблемам в поведении

ребенка. Эти отклонения в развитии могут носить длительный характер и быть

необратимыми. Низкий вес при рождении, отставание в росте и потеря слуха

также являются результатом свинцового отравления. Высокие дозы интоксикации

ведут к умственной отсталости, вызывают кому, конвульсии и смерть.

Белая книга, опубликованная российскими специалистами, сообщает, что

свинцовое загрязнение покрывает всю страну и является одним из

многочисленных экологических бедствий в бывшем Советском Союзе, которые

стали известны в последние годы. Большая часть территории России испытывает

нагрузку от выпадения свинца, превышающую критическую для нормального

функционирования экосистемы. В десятках городов отмечается превышение

концентраций свинца в воздухе и почве выше величин, соответствующих ПДК.

Наибольший уровень загрязнения воздуха свинцом, превышающий ПДК,

отмечался в городах Комсомольск-на-Амуре, Тобольск, Тюмень, Карабаш,

Владимир, Владивосток.

Максимальные нагрузки выпадения свинца, ведущие к деградации наземных

экосистем, наблюдаются в Московской, Владимирской, Нижегородской,

Рязанской, Тульской, Ростовской, Ленинградской областях.

Стационарные источники ответственны за сброс более 50 тонн свинца в

виде различных соединений в водные объекты. При этом 7 аккумуляторных

заводов сбрасывают ежегодно 35 тонн свинца через канализационную систему.

Анализ распределения сбросов свинца в водные объекты на территории России

показывает, что по этому виду нагрузки лидируют Ленинградская, Ярославская,

Пермская, Самарская, Пензенская и Орловская области.

В стране необходимы срочные меры по снижению свинцового загрязнения,

однако пока экономический кризис России затмевает экологические проблемы. В

затянувшейся промышленной депрессии Россия испытывает недостаток средств

для ликвидации прежних загрязнений, но если экономика начнет

восстанавливаться, а заводы вернутся к работе, загрязнение может только

усилиться.

Тетраэтилсвинец

Поступает в природные воды в связи с использованием в качестве

антидетонатора в моторном топливе водных транспортных средств, а также с

поверхностным стоком с городских территорий.

Данное вещество характеризуется высокой токсичностью, обладает

кумулятивными свойствами.

Содержание тетраэтилсвинца в воде водоемов хозяйственно-питьевого,

культурно-бытового и рыбохозяйственного назначения не допускается (ПДК —

полное отсутствие).

Серебро

Источниками поступления серебра в поверхностные воды служат подземные

воды и сточные воды рудников, обогатительных фабрик, фотопредприятий.

Повышенное содержание серебра бывает связано с применением бактерицидных и

альгицидных препаратов.

В сточных водах серебро может присутствовать в растворенном и

взвешенном виде, большей частью в форме галоидных солей.

В незагрязненных поверхностных водах серебро находится в

субмикрограммовых концентрациях. В подземных водах концентрация серебра

колеблется от единиц до десятков микрограммов в 1 дм3, в морской воде - в

среднем 0.3 мкг/дм3.

Ионы серебра способны уничтожать бактерии и уже в незначительной

концентрации стерилизуют воду (нижний предел бактерицидного действия ионов

серебра 2.10-11 моль/дм3). Роль серебра в организме животных и человека

изучена недостаточно.

ПДКв серебра составляет 0.05 мг/дм3.

Сурьма

Сурьма поступает в поверхностные воды за счет выщелачивания минералов

сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со

сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и

взвешенном состоянии. В окислительно-восстановительных условиях,

характерных для поверхностных вод, возможно существование как

трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в

субмикрограммовых концентрациях, в морской воде ее концентрация достигает

0.5 мкг/дм3, в подземных водах - 10 мкг/дм3. ПДКв сурьмы составляет 0.05

мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический),

ПДКвр - 0.01 мг/дм3.

Хром

В поверхностные воды соединения трех- и шестивалентного хрома попадают

в результате выщелачивания из пород (хромит, крокоит, уваровит и др.).

Некоторые количества поступают в процессе разложения организмов и растений,

из почв. Значительные количества могут поступать в водоемы со сточными

водами гальванических цехов, красильных цехов текстильных предприятий,

кожевенных заводов и предприятий химической промышленности. Понижение

концентрации ионов хрома может наблюдаться в результате потребления их

водными организмами и процессов адсорбции.

В поверхностных водах соединения хрома находятся в растворенном и

взвешенном состояниях, соотношение между которыми зависит от состава вод,

температуры, рН раствора. Взвешенные соединения хрома представляют собой в

основном сорбированные соединения хрома. Сорбентами могут быть глины,

гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки

растительных и животных организмов. В растворенной форме хром может

находитьсяв виде хроматов и бихроматов. При аэробных условиях Cr(VI)

переходит в Cr(III), соли которого в нейтральной и щелочной средах

гидролизуются с выделением гидроксида.

В речных незагрязненных и слабозагрязненных водах содержание хрома

колеблется от нескольких десятых долей микрограмма в литре до нескольких

микрограммов в литре, в загрязненных водоемах оно достигает нескольких

десятков и сотен микрограммов в литре. Средняя концентрация в морских водах

- 0.05 мкг/дм3, в подземных водах - обычно в пределах n.10 - n.102 мкг/дм3.

Соединения Cr(VI) и Cr(III) в повышенных количествах обладают

канцерогенными свойствами. Соединения Cr(VI) являются более опасными.

Содержание их в водоемах санитарно-бытового использования не должно

превышать ПДКв для Cr(VI) 0.05 мг/дм3, для Cr(III) 0.5 мг/дм3. ПДКвр для

Cr(VI) - 0.001 мг/дм3, для Cr(III) - 0.005 мг/дм3.

Цинк

Попадает в природные воды в результате протекающих в природе процессов

разрушения и растворения горных пород и минералов (сфалерит, цинкит,

госларит, смитсонит, каламин), а также со сточными водами

рудообогатительных фабрик и гальванических цехов, производств пергаментной

бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его

минеральных и органических комплексов. Иногда встречается в нерастворимых

формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120

мкг/дм3, в морских - от 1.5 до 10 мкг/дм3. Содержание в рудных и особенно в

шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и

нормальное развитие организмов. В то же время многие соединения цинка

токсичны, прежде всего его сульфат и хлорид.

ПДКв Zn2+ составляет 1 мг/дм3 (лимитирующий показатель вредности —

органолептический), ПДКвр Zn2+ - 0.01 мг/дм3 (лимитирующий признак

вредности — токсикологический).

Список литературы

1. Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации

химических веществ в окружающей среде. Справочник.— Л.: "Химия",1985.

2. Вредные химические вещества. Неорганические соединения I-IV групп:

Справ. изд./ Под ред. В.А. Филова и др. — Л.: "Химия",1988.

3. Вредные химические вещества. Неорганические соединения V-VIII групп:

Справ. изд./ Под ред. В.А. Филова и др. — Л.: "Химия",1989.

4. Мур Дж.В., Рамамурти С. Тяжелые металлы в природных водах. - М.: "Мир",

1987.

-----------------------

[pic]

[pic]


© 2010 Рефераты