Реакции электрофильного замещения в ароматическом ряду
Реакции электрофильного замещения в ароматическом ряду
Реферат по
Органической химии.
тема:
«Реакции электрофильного замещения в ароматическом ряду»
Оглавление:
|Электрофильное замещение в бензольном кольце |2 |
|Правила ориентации электрофильного замещения в бензольном | |
|кольце |4 |
|Реакция Фридела-Крафтса |8 |
|Галогенирование |10 |
|Сульфирование |11 |
|Нитрование |13 |
| | |
| | |
Электрофильное замещение в бензольном кольце.
В реакциях электрофильного замещения в бензольном кольце атом водорода
замещается на электрофильный реагент при сохранении ароматического
характера исходного соединения:
.
Механизм электрофильного замещения можно записать так:
.
1-я стадия: образование п-комплекса. В этом случае образуется слабая
связь между п-электронным облаком бензольного кольца и электрофильным
реагентом с дефицитом электронной плотности при сохранении ароматического
секстета. Электрофильный реагент располагается обычно перпендикулярно
плоскости кольца вдоль его оси симметрии. Эта стадия протекает быстро и не
влияет на скорость реакции. Существование п-комплекса доказывается методом
УФ-спетроскопии.
.
2-я стадия: образование б-комплекса. Эта стадия медленная и практически
не обратимая. Образуется ковалентная б-связь между электрофилом и атомом
углерода бензольного кольца, при этом атом углерода переходит из spІ в spі-
валентное состояние с нарушением ароматического секстета и образованием
циклогексадиенильного катиона (иона бензоления). Катион бензоления вместе с
противоионом образуют ионное соединение, хорошо проводящее электрический
ток. В ионе бензоления все атомы углерода расположены в одной плоскости, а
заместители у spі-гибридизованного атома углерода перпендикулярно ей.
.
Электрофильный реагент присоединяется за счет двух электронов п-
электронного облака бензольного кольца с нарушением ароматического
секстета. Устойчивость циклогексадиенильного катиона обусловлена
делокализацией положительного заряда с образованием мезомерной частицы, в
которой четыре п-элект-рона делокализованы в поле пяти ядер.
Истинное строение иона бензоления промежуточное между тремя предельными
структурами, реально не существующими (п,р-сопряжение), положительный заряд
локализован преимущественно в о- и п-положениях к месту присоединения
электрофила.
Придельные структуры б-комплекса:
.
Мезоформулы:
.
Бензолениевые ионы мало устойчивы и высокореакционны, но существуют
длительное время в сильной кислоте или сильнокислой среде, где противоион
не обладает нуклеофильными свойствами и не будет отщеплять протон.
3-я и 4-я стадии: образование второго п-комплекса и ароматизация. б-
комплекс может превращаться в новый мало устойчивый п-комплекс, который под
воздействием основания, обычно противоиона, депротонируется. При этом
восстанавливается ароматическая система: атом углерода переходит из spі в
spІ-валентное состояние и замыкается ароматический секстет.
.
б-комплекс п-комплекс
.
Первые две стадии электрофильного замещения у ароматических соединений
аналогичны электрофильному присоединению к алкенам, а 3-я и 4-я стадии
отличаются. Вместо присоединения нуклеофильного реагента к карбокатиону
отщепляется протон. Так как образуется энергетически более устойчивая
ароматическая система (1) по сравнению с диеновой (2):
.
Правила ориентации электрофильного замещения в бензольном кольце.
Все заместители делятся на два типа: первого рода (о- и п-ориентанты) и
второго рода (м-ориентанты).
.
Заместители первого рода, кроме Alk-группы, более электроотрицательны, чем
углерод, поэтому они уменьшают электронную плотность кольца по механизму
отрицательного индуктивного эффекта (-I-эффект). Однако в большинстве
заместителей первого рода атом, связанный с бензольным кольцо, имеет
неподеленную пару электронов, способную вступать в р,п-сопряжение (+М-
эффект). Относительная сила -I и +М-эффектов и определяет реакционную
способность соединения.
Заместители второго рода более электроотрицательны, чем углерод (-I-
эффект) и, кроме NR -группы, имеют п-связи, способные вступать в сопряжение
с бензольным кольцом.
|Орто-, пара-ориентанты |Мета-ориентанты |
|Активирующие: |Дезактивирующие |
|-O |-NR( |
|-NH(, -NHR, -NR( |-NO( |
|-OH, -OR |-SO(H |
|-NHCOR |-COR |
|-SH, -SR |-CHO |
|-Alk, -Aч |-COOH, -COOR |
|Дезактивирующие: |-CN |
|-F, -Cl, -Bч, -I |-CCl( |
| |-CF( |
| |-CH(NO( и др. |
Некоторые алкильные группы, несущие электроноакцепторные заместители,
являются м-ориентантами и дезактивируют кольцо. Электрофильный реагент в
таких соединениях преимущественно вступает в м-положения. Такими
заместителями являются:
Существуют два метода для определения реакционной способности соединений и
места преимущественного вступления в кольцо: статистический и динамический.
1.Статистический подход - основан на учёте положения: электрофильный
реагент, обладающий дефицитом электронной плотности, будет преимущественно
атаковать те положения кольца, где электронная плотность максимальна.
о,п-ориентанты: если в кольце присутствует заместитель с неподелённой
электронной парой, для которого +М-эффект (р,п-) больше -I-эффекта, тогда
все положения кольца имеют повышенную электронную плотность по сравнению с
бензолом. Реакционная плотность такого соединения выше незамещённого
бензола. Наибольший избыточный заряд сосредотачивается в о- и п-положениях
к заместителю, куда и вступает преимущественно электрофильный реагент.
.
м-ориентанты уменьшают электронную плотность кольца, но особенно сильно в
о- и п-положениях. Поэтому преимущественно электрофильный реагент вступает
в м-положения, выбирая места наименьшей дезактивации.
.
2.Динамический подход. Различие в действии ориентантов является
следствием их влияния на стабильность образующегося в промежуточной стадии
бензолениевого иона (б-комплекса). Чем выше устойчивость интермедиата, тем
меньше энергия активации.
о,п-ориентанты. Ориентация в о- и п-положения к заместителю первого рода
предпочтительнее, б-комплекс более устойчив вследствии сильно делокализации
заряда 6 в делокализации заряда принимает участие группа ОН. Соответственно
уменьшается свободная энергия активации переходного состояния в стадии
образования б-комплекса. В случае вступления электрофила в м-положение
стабилизация за счёт группы ОН невелика.
.
м-ориентанты. Анализ предельных структур б-комплексов показывает, что
второй заместитель будет преимущественно вступать в м-положение к
заместителю второго рода. Потому что только в этом случае заместитель не
будет мешать делокализации положительного заряда в трех позициях кольца б-
комплекса. Образование б-комплекса с положением электрофила в о- и п-
положениях мало вероятно, так как положительный заряд локализован лишь в
двух положениях кольца.
.
Правила ориентации имеют относительный характер и указывают лишь на
преимущественное место вступления второго заместителя. Чаще всего
образуются все три изомера в том или ином соотношении.
Ориентация в дизамещённых производных бензола.
Если в кольце уже есть два заместителя, то реакционная способность и место
вступления третьегозаместителя определяется распределением электронной
плотности в кольце с учётом их I- и М-эффектов. Действию электрофила
подвержены положения с наибольшей электронной плотностью или приводящие к
наиболее устойчивому б-комплексу.
В кольце два заместителя одного рода:
а) Два о, п-ориентанта. В этом случае наибольшая реакционная способность
наблюдается у соединений с м-положением заместителя (согласованная
ориентация).
б) Два м-ориентанта. Такие соединения проявляют низкую реакционную
способность, однако из трёх изомеров наибольшую активность проявляют м-
изомеры (согласованная ориентация).
Реакция Фриделя-Крафтса.
Реакция Фриделя-Крафтса - алкилирование или ацилирование ароматических
соединений в присутствии катализаторов - кислот Льюиса (AlCl(, BF(, FeCl()
или минеральных кислот (HF, H(PO( и др.). В качестве алкилирующих средств
используются алкилгалогенидыб алкены и спирты, а в качестве ацилирующих -
ацилгалогениды:
Алкилирование:
Ацилирование:
Алкилирование:
Алкилгалогениды наиболее распространенные алкилирующие средства.
Образование электрофильного реагента: центральный атом катализатора
образует б-комплекс, в котором связь углерод - галоген сильно ослаблена и
легко разрывается с образованием ионной пары:
CH(-CH(-Cl + AlCl( [CH(CH(-Cl-AlCl(] CH(CH( + AlCl(
Активность алкилгалогенидов уменьшается в ряду: AlkF > AlkCl > > AlkBч >
AlkI (в порядке уменьшения сродства галогена к атому алюминия). На
активность алкилгалогенидов влияет строение алкильной цепочки: третичные
более активны, чем вторичные, которые активнее первичных, это обусловлено
устойчивостью образующихся карбокатионов.
Реакция электрофильного замещения обратима:
.
Реакцией Фриделя-Крафтса приводит к образованию изомеров. Например,
алкилирование бензола н-пропилхлоридом приводит к образованию 70%
изопропилбензола (кумола):
C(H( + CH(CH(CH(Cl C(H(-CH-CH( + C(H(CH(CH(CH(
70% CH(
30%
Это можно объяснить перегруппировкой первичного н-пропильного катиона в
изопропильный:
H
CH(CH(CH(-Cl-AlCl( [CH(-CH-CH( CH(-CH-CH(] AlCl(
Алкены и спирты так же широко используются в реакциях Фриделя-Крафтса.
Например, для получение кумола применяют пропилен:
CH(
C(H( + CH(=CH-CH( C(H(-CH-CH(
Алкилирование идёт, если галогенид алюминия содержит следы галогеноводорода
(сокатализатора):
HX + AlX( H [AlX(]
CH(CH=CH( + H [AlX(] [CH(-CH-CH(] AlX(
Алкены вступают в реакцию алкилирования и в присутствии минеральных кислот
(HF или H(PO():
CH(-CH=CH( + H(PO( [CH(-CH-CH(] H(PO(
Спирты тоже участвуют в алкилировании в присутствии кислот Льюиса или
минеральных кислот:
R-O + BF( R [HOBF(]
H
В реакцию Фриделя-Крафтса вступают и алкильные производные бензола.
Реакция неселективна% кроме моноалкилированного соединения образуется ди- и
полиалкилзамещённые:
Моноалкилзаменщённые более реакционноспособны, чем бензол (Alk-группа -
заместитель первого рода), и легче вступают в реакции электрофильного
замещения. Реакция Фриделя-Крафтса обратима, при нагревании происходит
перегруппировка о- и п-диалкилбензолов в термически более устойчивый м-
диакилбензол. В реакцию Фриделя-Крафтса не вступают соединения с
заместителями второго рода, дезактивирующими кольцо.
Галогенирование.
1.Хлорирование бензола: реакция экзотермическая , по этому введение
галогена осуществляется в присутствии катализатора (кислот Льюиса) в жидкой
фазе, без нагревания. Наиболее часто используют хлорид железа (III).
2Fe + 3Cl( 2FeCl(
Cl-Cl + FeCl( Cl Cl FeCl( Cl-Cl-FeCl( [ Cl
][FeCl(]
Реакция протекает в инертном растворителе.
Бензольное кольцо атакуется неионизированным комплексом, а разрыв связи
Hal-Hal идёт на стадии образования бензолениевого катиона. Отсутствие
изотопного эффекта указывает на то, что стадия образования б-комплекса
самая медленная стадия процесса.
При избытке хлора хлорирование может проходить по ступенчатой схеме.
Вместе с хлорбензолом образуется о- и п-дихлорбензолы.
Сульфирование.
В качестве реагентов при сульфировании используется серная кислота и
олеум. Сульфирование обратимо и может сопровождаться образованием продуктов
вторичного замещения - диарилсульфона:
Aч-H + HOSO(OH AчSO OH + H(O
AчSO(OH + HAч AчSO(Aч + H(O
Сульфон не образуется при избытке серной кислоты, избыток серной кислоты
используют потому, что при уменьшении её концентрации резко уменьшается
скорость сульфирования, начинает преобладать обратная реакция - гидролиз.
В качестве сульфирующего реагента может выступать оксид серы (YI).
Образование оксида серы (YI) может происходить в результате автопротолиза
серной кислоты:
H
HOSO(OH + H-OSO(OH HOSO(O-H + OSO(OH
HOSO(O-H H(O + HOS H(O + S
H
O
Высокая электрофильность серы обусловлена высокой полярностью связе S-O.
Это приводит к тому, что в стадии образования б-комплекса у серы
освобождается свободная орбиталь, способная образовать б-связь с двумя п-
электронами кольца.
Сульфирование:
.
При сульфировании все стадии процесса обратимы. В случае сульфирования
олеумом, в котором нет сильного основания - воды, способствующего
отщеплению протона от б-комплекса, скорость определяется стадией отщепления
протона, присутствует изотопный эффект. Если сульфируют купоросным маслом,
в котором есть вода, то самой медленной является стадия образования б-
комплекса, изотопный эффект отсутствует.
Нитрование.
Нитрование может происходить под действием разных нитрующих реагентов:
концентрированной или разбавленной азотной кислоты; нитрующей смеси (смеси
азотной и серной кислот); смеси нитрата калия и серной кислоты: KNO( +
H(SO( KHSO( + HNO(; смеси азотной кислоты с уксусным ангидридом:
O O O
CH(-C-O-C-CH( + HO:NO( CH(-C-O-NO( (ацетилнитрат)
Электрофильную атаку бензольного кольца осуществляет нитроний-катион,
образующийся из нитрующей смеси:
HNO( + 2H(SO( NO( + H(O + 2HSO(
Нитрование происходит по обычному механизму, изотопный эффект отсутствует:
Катион нитрония, атомы азота находятся в sp-гибридизации, не содержит
свободных орбиталей. В п-комплексе он располагается вдоль оси симметрии
бензольного кольца, сохраняя sp-гибридизацию. В стадии б-комплекса атом
азота переходит в sp(-гибридизацию.
|