Рефераты

Застосування наночасток для лікування тварин

Застосування наночасток для лікування тварин

3

41

Зміст

Вступ

1. Наночастки та їхня характеристика

2. Застосування колоїду наночасток Ag, Cu, Zn, Mg для лікування тварин, уражених гнійним артритом

3. Ефективність застосування наночасток металів в ортопедії

4. Застосування наночасток металів для лікування хвороб копитець заразної етіології

5. Лікувальна ефективність очних желатинових плівок із наночастками металів

6. Дезінвазія тваринницьких приміщень аніоноподібними наночастами металів

7. Дезінвазія ґрунту наночастками магнію

8. Застосуванням наночасток металів для дезінвазії каналізаційних стоків

Список літератури

Вступ

У наш час все частіше застосовують наночастки металів у біологічній, ветеринарній та медичній практиках.

Серед переваг характерних для наноречовин слід виділити їхню біологічну сумісність та екологічну чистоту, завдяки яким можна значно розширити спектр застосування продуктів нанотехнології у різних галузях народного господарства та медицині.

Продукти нанотехнології лише починають завойовувати український ринок. Проте на промисловому рівні виготовляються нанорозчини біоцидних металів для дезінфекції тваринницьких приміщень, знезараження води, а також пакувальний матеріал для продуктів харчування тощо.

Пошук методів лікування та профілактики хвороб тварин, оснований на застосуванні наночасток металів, представляє важливий науковий і практичний інтерес.

Серед великого спектра хвороб тварин, слід виділити паразитарні та хірургічну патологію.

Широкий вибір антгельмінтиків, представлений нині на ринку ветеринарних засобів України, не дозволяє у повній мірі забезпечити паразитарне благополуччя. Контаміновані яйцями та личинками паразитів гній, ґрунт, вода, предмети догляду за тваринами, станки, годівниці тощо є факторами передачі паразитозів. Розробка ефективних та екологічно чистих засобів дезінвазії дозволить перервати епізоотологічний ланцюг і запобігти поширенню паразитарних хвороб тварин.

Хірургічні хвороби реєструються в 21-23 % випадків усіх хворих тварин. Переважно це рани, гнійне запалення суглобів, ураження копит і копитець тощо. Лікування тварин із цими ураженнями є важливою науковою проблемою, що має велике практичне значення.

1. Характеристика наночасток

Серед різноманітних видів і методів отримання наночасток на особливу увагу заслуговують розробки українських дослідників, які отримали електрично заряджені наночастки. Основою ерозійно-вибухової нанотехнології є фізичне явище самоконцентрації енергії.

Найбільший інтерес представляють ерозійно-вибухові нанотехнології, за допомогою яких були синтезовані нові електрично заряджені колоїди наночасток металів. У якості комплексоутворювача в них виступають наночастки мікроелементів із поверхневим електричним зарядом зі знаком «мінус», а в ролі лігандів - молекули води або інших хімічних елементів. Це новий клас комплексних сполук із координаційним числом, більшим за 12, що досягається відповідною електризацією наночасток.

Наночастки утворюються при вибухах локальних ділянок металевих гранул у процесі електроімпульсної абляції у воді. В результаті вибуху утворюються потужні потоки електронів, у яких знаходяться наночастки. Навколо них утворюється поверхневий електричний заряд із знаком «мінус». За структурною будовою наночастки є подібні до аніонного хелатного комплексу через наявність у металевих наночастках поверхневого електричного заряду зі знаком «мінус», але при цьому виключаються токсичні прояви через відсутність аніона.

Надзвичайно цікавою є розробка ТОВ «Наноматеріали і нанотехнології», технологія на створення наночасток різнорідних металів у вигляді структурованих агломератів наночасток різних розмірів, які знаходяться між собою в електричному контакті. Їх отримують при певних режимах ерозійно-вибухового диспергування металевих гранул різнорідних металів (не менше двох). Причому, електричне поле частинок меншого розміру має більший градієнт потенціалу, ніж частинок великого розміру. При близькому розташуванні малих і великих частинок за рахунок електростатичної індукції на локальних ділянках поверхні великої частинки, напроти малої частинки, утворюються наведені (індуковані) заряди протилежного знаку (щодо знака заряду частинки меншого розміру). Тому на поверхні великої частинки «налипають» дрібні частинки, які знаходяться між собою в електричному контакті. Це дозволяє задіювати електрохімічні явища за рахунок використання металів із різними електрохімічними потенціалами. При цьому підвищується активність хелатного аквананохелату. В якості комплексоутворювача поліметалевого хелатного аквананокомплексу виступають наночастинки різнорідних металів. Оптимальне співвідношення середніх розмірів наночастинок різнорідних металів знаходиться в межах 5-20. Це дозволяє, з одного боку, отримати стійкий хелатний аквананокомплекс, а з іншого забезпечити оптимальне покриття поверхні великих наночастинок малими наночастинками і тим самим не обмежувати контакт великої частинки із зовнішнім середовищем і, відповідно, не перешкоджати прояву електрохімічних властивостей поліметалевого хелатного аквананокомплексу.

При створенні та промисловому виробництві наночасток за допомогою ерозійно-вибухової технології основний акцент був націлений на біоцидні метали (Ag, Cu, Zn, Mg та ін.). На основі колоїдного срібла й міді розроблені засоби для дезінфекції та консервації питної води, фільтри й мембрани для очистки соків, пива, вина та повітря. Наноматеріал «шумерське срібло», до складу якого входять наночастки срібла і міді ефективно проявив себе при знезараженні приміщень діючого свинокомплексу та птахофабрики.

Унікальні структура і властивості наноматеріалів, отриманих методом ерозійно-вибухових технологій, відкривають перед дослідниками широкі можливості щодо їх застосування, в тому числі з метою запобігання та ліквідації найпоширеніших хвороб тварин.

2. Застосування колоїду наночасток Ag, Cu, Zn, Mg для лікування тварин, уражених гнійним артритом

У тварин гнійні артрити діагностуються в 22 - 23 % випадків від загального числа уражень суглобів. Найчастіше уражуються копитні суглоби. Гнійний подоартрит виникає внаслідок поранень або метастатичного занесення інфекта в суглоб (первинно), а також у зв'язку з флегмоною вінчика, гнійним пододерматитом, гнійним подотрохлеїтом (вторинно). Поетапно спостерігається гнійний синовіт (емпієма), гнійний артрит, параартикулярна флегмона, гнійний остеоартрит.

Лікування проводили за модифікованим методом Б. С. Семенова (1981). Тварин фіксували в стоячому положенні. Внутрішньо м'язово вводили 7 - 10 мл 2,5 %-ного розчину супрастину (діє антиалергічно). Виконували артоцентез з боку найбільш виповненого дивертикула, видаляли ексудат, промивали розчином етакридину лактату. Після повного видалення рідини для промивання у контролі в суглоб уводили 20 мг хімотрипсину або 50 мг хімопсину (лізують внутрішньосуглобове випадання фібрину) з 1 г неоміцину сульфату, розчинених у 5 мл 0,5 %-ного розчину новокаїну. Лікувальну обробку повторювали тричі з добовим інтервалом.

У дослідних у тварин-аналогів внутрішньосуглобові ін'єкції антибіотика заміняли інтраартикулярними введеннями 5 мл колоїду наночасток Ag, Cu, Zn, Mg, Co.

У контролі клінічне видужування тварин і відновлення функції кінцівки наставало через 13±2,5 доби від дня виникнення захворювання. Протягом перших 6-7 діб перебігу захворювання у тварин діагностували пригнічення, гарячку, понаднормове прискорення пульсу й дихання.

У досліді клінічне видужування тварин і відновлення функції кінцівки наставало через 8±1,5 доби. Деяке пригнічення, прискорення пульсу і дихання відмічали тільки протягом перших 3-4 діб. При обстеженні суглобів реєстрували швидке розсмоктування запального набряку, виражену флуктуацію на початку лікування і відсутність її при його закінченні.

Інтимні зміни морфофункціональних характеристик стану суглоба чітко маркіруються цитологічними дослідженнями суглобового вмісту (табл.1).

Таблиця 1

Синовіоцитограма при гнійному синовіті до та після лікування, n=5

Дослідження

Синовіо-

цити

Гістіоцити

Лімфоцити

Моноцит/

макрофаги

Нейтрофіли

Дистрофічні

клітини

До лікування

2,8±0,36

3,0±0,67

5,0±0,90

3,8±0,36

73,8±1,48

11,6±0,49

Через 3 доби від початку лікування:

а) антибіотиком,

б) наночастками металів

3,0±0,45

4,8±0,36

*

4,2±0,58

5,6±0,49

*

8,2±0,36

9,4±0,27

*

4,6±0,40

5,4±0,49

69,0±0,67

65,4±0,72

**

11,0±0,45

9,4±0,27

*

Через 9 діб від початку лікування:

а) антибіотиком,

б) наночастками металів

4,4±0,49

29,8±1,03

***

5,4±0,49

6,4±0,63

*

8,6±0,27

35,0±0,45

***

22,4±0,49

5,2±0,8

***

50,0±0,90

19,4±2,50

***

9,2±0,36

4,2±0,58

***

Через 15 діб від початку лікування:

а) антибіотиком,

б) наночастками металів

22,6±1,61

38,4±1,17

***

7,2±0,36

11,0±0,67

***

25,4±0,96

40,0±0,67

***

18,0±2,02

3,6±0,49

***

21,4±3,99

5,0±0,67

***

5,4±0,72

1,6±0,27

***

П р и м і т к а: 1. * - р<0,05;

2. ** - p<0,01;

3. *** - p<0,001, порівняно з контролем.

За даними таблиці 1, вже на 3-тю добу спостережень усі показники синовіоцитограми в досліді достовірно відрізнялись від аналогічних показників у контролі за винятком вмісту моноцит/макрофагів, засвідчуючи переваги застосування при гнійному артриті наночасток металів.

На 9-ту добу спостережень ця тенденція значно посилилась (за винятком вмісту гістіоцитів) і вже на 15-ту добу без будь-яких виключень досягала апогею. При цьому в синовіоцитограмі при застосуванні наночасток, порівняно з долікувальним періодом, вміст синовіоцитів збільшився в 13,7 разів і в цей же період часу перевищив контроль на 33,1 %. Аналогічно вміст гістіоцитів збільшився у 3,67 разів, а порівняно з контролем - у 2,62 рази; вміст лімфоцитів - у 8 разів і на 36,5 %; збільшений вміст моноцит-макрофагів, порівняно з долікувальним періодом, повністю нормалізувався і був меншим за контроль, у якому все ще зберігались цитологічні ознаки запалення, у 5 разів.

Вміст нейтрофілів, як основної цитологічної ознаки гнійного запалення, аналогічно зменшився у 14,75 та у 4,28 разів. Разом з тим зменшився вміст дистрофічно змінених клітин порівняно з долікувальним періодом у 7,25 рази, а порівняно з контролем - у 3,37 разів.

Таким чином, дані синовіоцитограми об'єктивно засвідчують незаперечні переваги місцевого застосування при гнійних артритах колоїду наночасток порівняно з антибіотикотерапією (переважно за рахунок наносрібла з його вираженими антисептичними властивостями). В першу чергу це пояснюється неможливістю утворення резистентності мікроорганізмів проти наночасток, у той час як стійкість бактерій проти антибіотиків постійно зростає й поширюється.

Крім того, слід ураховувати участь наночасток Cu, Zn, Mg, Co, як коферментів металів, у багатьох біохімічних реакціях, перебіг яких відображається в цитологічних характеристиках синовіоцитограм.

Отже, застосування колоїду наночасток Ag, Cu, Zn, Mg, Co характеризується синергічною дією двох аспектів нанотерапії - антисептичного й біохімічно-стимулювального, сумарна дія яких і забезпечує високу ефективність (85 - 89 %) виліковування хворих тварин навіть за такої тяжкої патології як гнійний синовіт.

Гематологічними дослідженнями виявлено чітку реакцію цілісного тваринного організму як на септичне ураження суглоба, так і на перебіг змін, пов'язаних із лікуванням хвороби (табл. 2).

Таблиця 2

Гематологічні показники при місцевому лікуванні гнійного синові ту, n=5

Дослідження

Еритроцити, Т/л

Гемоглобін, г/л

Лейкоцити,Г/л

Лікування

4,68±0,04

80,2±1,48

17,0±0,67

Через 3 доби від початку лікування:

а) антибіотиком,

б) наночастками металів

4,8±0,04*

5,0±0,04***

86,4±1,30*

90,2±1,03***

14,8±0,58*

12,0±0,67***

Через 9 діб від початку лікування:

а) антибіотиком,

б) наночастками металів

4,98±0,06**

5,44±0,06*

92,0±0,90*

99,9±1,25***

11,4±0,40***

9,6±0,49***

Через 15 діб від початку ліування:

а)антибіотиком,

б) наночастками металів

5,2±0,07*

6,22±0,15***

96,8±1,48**

114,0±1,19***

10,0±0,22

8,4±0,27**

Примітка: 1. * - р<0,05;

2.** - p<0,01;

3.*** - p<0,001, порівняно з попереднім періодом часу

Як свідчать дані таблиці 2, перебіг гнійного артриту супроводжувався позанормованим зниженням у крові вмісту еритроцитів і гемоглобіну та збільшенням вмісту еритроцитів, що, очевидно, зумовлено токсичним впливом гнійного запалення. Через 3 доби від початку лікування із використанням антибіотика відмічено достовірне збільшення в крові вмісту еритроцитів і гемоглобіну. Проте воно залишалось нижчим за норму. Крім того, спостерігалося достовірне зменшення кількості лейкоцитів, вміст яких все ще був більшим верхнього показника норми. При використанні наночасток металів вміст еритроцитів у середньому досяг нижньої межі норми; вміст гемоглобіну, хоча достовірно й збільшився, проте все ще був меншим за норму; вміст лейкоцитів у середньому знизився до верхньої межі норми.

Отже. введення в суглоб колоїду наноаквахелатів металів не проявляє пошкоджуючої дії на його структурно-функціональні характеристики; введення в суглоб гідрокортизону ацетату в деяких випадках призводить до переходу асептичного запалення у гнійне.

При внутрішньосуглобовому введенні колоїду наночасток металів хворі на асептичний синовіт тварини видужували в 97,5 % випадків.

Внутрішньосуглобове введення колоїду наночасток металів при гнійному синовіті супроводжується виліковуванням хворих тварин у 85 - 89 % випадків.

3. Ефективність застосування наночасток металів в ортопедії

Хвороби копитець у корів діагностуються відносно часто; вони завдають скотарству значних економічних збитків (зниження продуктивності, недоотримання приплоду, вимушене вибраковування тощо). Так, у Росії економічні втрати від хвороб копитець у корів становлять 800 - 900 млн. карбованців на рік, в Україні ці збитки досягають 100 - 200 млн. гривень. Найбільш загрозливими є ураження копитець заразної етіології, при яких удосконалення лікувальних заходів набувають значної актуальності.

Опорна здатність копитець корів багато в чому залежить від щільності й твердості копитцевого рога, які забезпечуються біохімічними процесами в епідермісі копитець. При зниженні біофізичних показників останнього травмується основа шкіри копитець і виникає пододерматит.

Досліджували копитця корів-аналогів чорно-рябої породи, віком 4-5 років, продуктивністю 5000 кг молока на рік; на час досліджень корови були яловими. До першої групи були включені тварини, яких утримували на дерев'яній підлозі; до другої - корови, яких утримували за аналогічних умов, але копитця яких піддавали періодичній обробці колоїдом наночасток металів; до третьої - тварини, яких утримували на бетонній підлозі; до четвертої групи - корови, яких утримували за таких же умов, але копитця яких періодично обробляли наночастками металів.

Через місяць від початку дослідів із підошовної ділянки копитець були відібрані шматочки рогу для біохімічних і біофізичних досліджень.

Вміст міді та цинку в роговому матеріалі визначали методом атомно-абсорбційної спектрометрії, білок - на апараті К'єльдаля, сірку та SH-групи - хімічними методами, вологу - стабільним висушуванням, а кількість попелу - спалюванням зразків у муфельній печі. Показник щільності визначали методом гідростатичного зважування; твердість копитцевого рогу - за методом Бринеля, а опір проти стирання - за допомогою спеціального приладу УкрНІКП.

У дослідженні використовували колоїд наночасток Ag, Cu, Zn, отриманих методом ерозивно-вибухового диспергування біоцидних і біогенних металів.

Цифрові дані обробляли методом варіаційної статистики із застосуванням t-критерію Стьюдента за програмою «Статистика».

Вміст мінеральних речовин у роговому матеріалі копитець представлено в табл. 3

Таблиця 3

Вміст мінеральних речовин у копитцевому розі корів, n=5

Показники

Сірка, г/кг

Мідь, мг/кг

Цинк, мг/кг

При утриманні на дерев'яній підлозі, контроль;

При утриманні на дерев'яній підлозі з обробкою наночастками металів

18,8±0,46

22,0±1,12*

27,8±1,43

32,6±0,72*

17,6±1,61

23,2±0,81*

При утриманні на бетонній підлозі, контроль;

При утриманні на бетонній підлозі з обробкою наночастками

20,6±0,85

23,2±0,76*

29,4±0,85

34,0±1,12**

19,0±1,12

23,8±0,36**

Примітка: 1. * - p<0,05;

2. ** - p<0,01.

Як свідчать дані табл. 3, при утриманні корів на дерев'яній підлозі обробка копитець наночастками металів супроводжується збільшенням вмісту сірки на 14,55 %, міді - на 14,72, цинку - на 24,14 %.

При утриманні тварин на бетонній підлозі обробка копитець наночастками металів супроводжується збільшенням вмісту сірки на 11,21 %, міді - на 13,53, цинку - на 20,17 %.

Обробка копитець наночастками металів супроводжується покращенням біохімічних і біофізичних характеристик копитцевого рога (табл. 4).

Таблиця 4

Біохімічні та біофізичні показники копитець рога при утриманні корів на підлогах різних типів у контролі та при обробці наночастками металів, n=5

Показники

Утримання на дерев'яній підлозі, контроль

Обробка наночастками при утриманні на дерев'яній підлозі

Утримання на бетонній підлозі, контроль

Обробка наночастками при утриманні на бетонній підлозі

Волога, %

33,2±1,48

27,4±0,85**

26,6±0,49

21,0±2,12**

Попіл, %

1,14±0,04

1,26±0,03*

1,18±0,04

1,36±0,05*

Білок, %

88,0±0,9

92,6±1,17*

91,8±0,40

93,0±0,22*

SH-групи, мкмоль/г

31,4±0,72

35,2±0,58**

32,2±1,03

36,4±0,40**

Щільність,

г/см3

1,08±0,01

1,15±0,02**

1,10±0,01

1,18±0,008***

Твердість,

кгс/см3

147,4±1,17

154,0±1,12**

155,0±0,67

160,2±0,55***

Опір проти стирання, об/мм

95,4±0,72

114,8±1,08***

104,8±1,93

117,0±2,02**

1.* - p<0,05;

2. ** - p<0,01;

3. *** - p<0,001.

Як свідчать дані табл. 4, при утриманні корів на дерев'яній підлозі при обробці копитець наночастками металів у роговому матеріалі зменшується вміст вологи зменшується на 18,01 %, вміст попелу збільшуються на 9,05, білку - на 9,52, сульфгідрильних груп - на 8,92, щільність - на 9,39, твердість - на 9,57, опір проти стирання на 8,31 %.

При утриманні на бетонній підлозі при обробці копитець наночастками металів вміст вологи зменшується на 21,05 %, вміст попелу збільшуються на 8,68, білка - на 9,87, сульфгідрильних груп - на 8,85, щільність - на 9,32 %, твердість - на 9,67 %, опір проти стирання - на 8,96 %.

Таким чином, обробка копитець наночастками металів супроводжується суттєвими змінами як біохімічних, так і біофізичних характеристик копитцевого рогу. Копитцевий ріг ущільнюється, в ньому зменшується вміст вологи, за рахунок чого зростає вміст усіх досліджених біохімічних показників і значно покращуються основні біофізичні параметри.

Крім того, наночастки металів виразно впливають на перебіг кератиногенезу, основу якого становить перехід сульфгідрильних груп цистеїну в дисульфідні групи цистину з їх подвійними зв'язками. За рахунок цього відбувається укріплення біохімічної й біофізичної структур білкових молекул копитцевого рогу:

R - НS + SН - R - S = S - R + 2Н (Н2О)v.

Перебіг процесу кератинізації потребує кофакторної дії, в першу чергу таких металів як мідь і цинк. Вплив наноміді та наноцинку на кератинізацію набагато вираженіший, ніж дія цих металів у молекулярному масштабі. Останнє чітко проявляється в порівняльному досліді, за якого копитця в контролі обробляли 10 %-вим розчином міді сульфату в суміші з цинком сульфатом. Початкові контрольні й дослідні біохімічні і біофізичні показники були ідентичними. Обробка солями й наночастками міді та цинку тривала 3 дні по 30 хв тричі на день. Результати враховували через 5 днів (табл. 5).

Таким чином, обробка копитець колоїдом наноміді та наноцинку, порівняно з їх обробкою розчином солей міді й цинку, достовірно покращує біохімічні і біофізичні показники копитець за виключенням вмісту сірки та зволоженості копитцевого рогу, які відносно мало впливають на інші його якості. Так, вміст міді збільшився на 10,3 %, цинку - на 24,55, попелу - на 7,63, білка - на 4,15, сульфгідрильних груп - на 7,19, щільність - на 4,51, твердість - на 3,58, опір проти стирання на 9,4 %.

Таблиця 5

Показники основних якостей копитцевого рогу при обробці солями й наночастками міді та цинку, n=5

Показники

Обробка 10 %-вим розчином сульфатів міді й цинку

Обробка наночастками міді та цинку

Сірка, г/кг

23,4±0,49

22,0±1,34

Мідь, мг/кг

28,0±0,45

31,2±0,81**

Цинк, мг/кг

16,6±1,52

22,0±0,89*

Волога, %

31,6±1,08

32,0±0,89

Попіл, %

1,09±1,18

1,18±0,01*

Білок, %

87,8±0,99

91,6±1,39*

SH-групи, мкмоль/г

31,0±0,45

33,4±0,72*

Щільність, г/см3

1,06±0,02

1,11±0,002*

Твердість, кгс/см2

145,6±0,85

151,0±0,89**

Опір проти стирання, об/мм

92,4±1,17

102,0±2,47**

Примітка: 1.* - p<0,05;

2. ** - p<0,01.

Отже, наночастки Cu і Zn при обробці копитець включаються в процеси кератинізації, в той час як обробка солями міді й цинку супроводжується лише певним, у якійсь мірі, поверхневим просякненням рогу, яке досить швидко зникає під впливом вологи підлог.

Стимулювальний вплив комплексу наноаквахелатів Ag, Cu, Zn зумовлений специфічною активністю кожної складової.

Срібло має виражені антисептичні властивості. Воно пригнічує кератолітичну дію патогенної мікрофлори та грибів.

Мідь приймає участь у багатьох біохімічних процесах як складова частина ферментоактивних білків, які переносять електрони в реакціях окиснення та відновлення органічних субстратів.

Цинк забезпечує перебіг транспортних процесів, пов'язаних із металоензимними перетвореннями значної кількості біохімічних сполук. Разом з міддю він виражено впливає на синтез кератинових білків. Іонний радіус цинку менший ніж у міді, у зв'язку з чим цинк несе концентрованіший заряд, порівняно з міддю, що зумовлює його більшу спорідненість до електронів. Це забезпечує широку участь цинку в різних біологічних процесах, таких як гідроліз, приєднання до подвійних зв'язків, окиснення - відновлення тощо.

Висока метаболічна активність наноміді й наноцинку, що проявляється у вираженій оптимізації біохімічних і біофізичних показників копитцевого рогу, зумовлена наявністю у наночасток корпускулярного, хвильового та квантового ефектів, чого не може бути у мікроелементів у молекулярній формі. Дія наночасток цілком узгоджується із законами квантової фізики щодо поводження часток такого роду в перебізі різних біохімічних процесів, зокрема кератинізації. Різноманітні часточки, які знаходяться в розчині або суспензії у формі атомів, електронів і, можливо, в інших дещо менших за розмірами часток, проявляють ті ж самі властивості, що й електрони у класичному фізичному аспекті. У перебізі фізико-хімічних реакцій наночастки виступають у якості потужного донора та діють як сильні стимулятори перебігу фізичних і хімічних явищ.

Отже, обробка рогу копитець аквахелатом наносрібла, наноміді, наноцинку супроводжується збільшенням вмісту сірки, міді й цинку та значним покращенням біофізичних показників копитцевого рогу, що набагато перевищує біохімічні й біофізичні характеристики копитцевого рогу порівняно з обробкою 10 %-вим розчином міді сульфату і цинку сульфату. Це пояснюється включенням екзогенних наночасток у перебіг біохімічних реакцій епідермісу копитець.

4. Застосування наночасток металів для лікування хвороб копитець заразної етіології

Заразні хвороби копитець корів досліджували в господарствах Київської, Чернігівської, Черкаської та Полтавської областей за допомогою клінічних (огляд, пальпація, перкусія), бактеріологічних з ідентифікацією мікроорганізмів згідно визначника Берджі (1997) та мікологічних методів. За принципом аналогів корів із неспецифічними гнійно-некротичними ураженнями, некробактеріозом і кератомікозами розподілили на контрольну та дослідну групи для кожної окремої нозології.

При неспецифічних гнійно-некротичних ураженнях, некробактеріозі та кератомікозній патології хворих корів ізолювали, ставили в чисті продезінфіковані станки. Потім на старанно очищені копитця і застосовували накладали просочені лікувальними препаратами серветки, які фіксували захисною пов'язкою. Обробки повторювали з інтервалом 3 - 4 дні до повного зникнення клінічних ознак ураження (некротичні вогнища, виразки, розпад копитцевого рогу, кульгання тощо). Для корів контрольних груп серветки просочували фенол-скипидар-димексидною емульсією, для корів дослідних груп - сумішю колоїдів нанокластерів Ag, Cu, Zn, Mg. Суміш колоїдів металів - це двокомпонентна система з деіонізованої води та часток металів у нанорозмірному стані (1,0 - 50,0 нм). Колоїд мав слабокислу реакцію з рН 6,7 - 6,9, вміст металів від 10 до 100 мг/л. Отриманий фізичним методом, даний колоїд значно відрізнявся від колоїдів Ag, Cu, Zn, Mg, отриманих хімічним або електролізним способом, де іони металів діють токсично і тому при лікуванні використовуються досить обмежено.

У якості етіологічного фактора при неспецифічних гнійно-некротичних ураженнях копитець виявляли асоціації умовно-патогенної мікрофлори, до складу яких входили стафілококи, стрептококи, диплококи, протей, кишкова паличка та досить патогенні мікроорганізми - Clostridium perfringens тип А, Corynebacterium piogenes.

Спостерігали ерозії, виразки та поверхневе нагноєння з наявністю вогнищ некрозу в ділянках шкіри міжпальцевого склепіння, кайми, м'якушів. Встановлювали майже повну відсутність утворення грануляційного бар'єру, у зв'язку з чим ураження було м'яким і при натисненні з нього виділявся гнійний ексудат. При відсутності лікування гнійно-некротичне ураження прогресувало, поширюючись на підшкірну клітковину, бурси, сухожилкові піхви, сухожилки і зв'язки пальців, а згодом на суглоби й кістки. При цьому хвора тварина втрачала можливість спирання на уражену кінцівку.

У випадках постановки діагнозу на некробактеріоз (фузаріоз) виявляли Fusobacterium necrophorum. Клінічно спостерігали ерозії та виразки спочатку в шкірі міжпальцевого склепіння, вінчика, м'якуша, суглобів, які згодом набували типових ознак гнійно-некротичних вогнищ. Своєрідною клінічною ознакою некробактеріозу на початку розвитку хвороби було утворення чітко виражених грануляційних бар'єрів, які певний час обмежували поширення некротичних змін, але які згодом під дією ферментів і токсинів збудника руйнувались, що зумовлювало прогресування ураження. Некробактеріозні виразки мали рожевий колір, обмаль гнійного ексудату і пальпаторно були досить твердими.

При кератомікозному ураженні захворювання починалось деструктивними змінами копитцевого рогу, вогнища якого прогресували. У зв'язку з цим погіршувались опорні якості рогової капсули, ріг ставав відносно м'яким, він частково розпадався, при пальпації встановлювали болючість. З часом процес ускладнювався явищами неспецифічного гнійного поверхневого пододерматиту.

При мікологічному дослідженні з використанням у складі живильних середовищ часточок копитцевого рогу, що дозволяло встановити кератолітичні властивості патогенів мікозної природи, диференціювали асоціації грибів у різних комбінаціях. Найчастіше виявляли Trichoderma viride, Aeremoniella atra, Cladosporium chrisanthemi.

Результати лікування ураження копитець заразної етіології представлені в табл. 6.

Таблиця 6.

Порівняльна ефективність фенол-скипидар-димексидної емульсії (контроль) та нанокластерного колоїду металів (дослід)

Показники

Неспецифічні гнійно-некротичні процеси

Некробактеріоз

Кератомікози

Кількість корів у досліді

Кількість корів у контролі

22

18

15

14

12

12

Кількість обробок, у досліді

Кількість обробок, у контролі

1 - 2

3 - 5

2 - 3

6 - 7

3 - 4

7 - 8

Термін виліковування у досліді, діб

Термін виліковування у контролі, діб

8 - 10

15 - 17

10 - 12

16 - 19

7 - 9

13 - 16

За даними таблиці 6, кількість обробок у досліді, порівняно з контролем, була меншою: а) при неспецифічних гнійно-некротичних процесах у 2,7 разів, б) при некробактеріозі в 2,6 разів, в) при кератомікозному ураженні в 2,1 рази. Термін виліковування в досліді, порівняно з контролем, прискорювався: а) при неспецифічних гнійно-некротичних процесах у 1,8 разів, б) при некробактеріозі в 1,6 рази, в) при кератомікозному ураженні в 1,8 разів.

Таким чином, застосування колоїду наночасток Ag, Cu, Zn, Mg дає змогу значно скоротити кількість лікувальних обробок і суттєво прискорити термін виліковування. Це зумовлено потужною лікувальною дією металів у нанокластерному розмірі, яким, згідно із законами квантової механіки (фізики), притаманна як корпускулярна, так і хвильова активність і які здатні передавати свою енергетику кофакторами металів у всіх без виключення біохімічних процесах, що значно інтенсифікувало перебіг останніх і що знайшло своє вираження в зменшенні лікувальних обробок і прискоренні видужування хворих тварин. При цьому, здійснюючи підбір наноаквахелатів металів, ураховували їхню специфічну участь у процесах обміну речовин. Так, мідь, цинк і магній виступають в якості кофакторів великої кількості біохімічних і структурних процесів: мідь є невід'ємною складовою частиною оксидаз, забезпечує перебіг процесів кератинізації твердих кератинів копит, сприяє антиоксидантному захисту, посилює продукування колагену тощо; цинк, як кофактор біохімічних і структурних перетворень, інтенсифікує продукування м'якого кератину шкіри, посилює перебіг ферментативних реакцій та ін.; магній приймає активну участь у синтезі білка, поділі клітин, в енергетичних реакціях, зокрема в продукуванні АТФ-ази тощо.

Особливе значення у боротьбі з бактеріальними та грибковими інфекціями має срібло, якому притаманні виражені антисептичні властивості. Препарати срібла характеризуються широким спектром антимікробної активності щодо грампозитивних і грамнегативних, аеробних та анаеробних, спороутворюючих й аспорогенних бактерій у вигляді монокультур і мікробних асоціацій, включаючи антибіотикостійкі штами. Сполуки срібла проявляють віруцидну та фунгіцидну активність, діють протизапально. Антисептичні властивості срібла помітно посилюються в поєднанні з міддю.

Застосування металів у нанокластерному масштабі значно інтенсифікує їхню лікувальну здатність.

Отже, якщо лікування тварин з інфекційними ураженнями копитець фенол-скипидарно-димексидною емульсією можна вважати сугубо етіотропною терапією, то застосування наноаквахелатів Ag, Cu, Zn, Mg заключає в собі, крім етіотропної, ще й потужну патогенетичну терапію, що й визначає оптимальний спосіб лікування.

Таким чином, лікування неспецифічних гнійно-некротичних процесів, некробактеріозу та кератомікозів фенол-скипидар-димексидною емульсією є сугубо етіотропною терапією.

Застосування при лікуванні неспецифічних гнійно-некротичних процесів, некробактеріозу та кератомікозів суміші колоїдів наноаквахелатів Ag, Cu, Zn, Mg представляє собою потужну комплексну (етіотропну та патогенетичну) терапію, застосування якої супроводжується значним зменшенням кількості обробок і значним прискоренням виліковування хворих тварин.

5. Лікувальна ефективність очних желатинових плівок із наночастками металів

Лікування кон'юнктивітів і кератитів у тварин краплями лікувальних розчинів досить поширено в офтальмологічній практиці, але при даному методі дія лікарських препаратів короткочасна, а їхня концентрація зменшується у зв'язку з розведенням слізною рідиною. Крім того, очні краплі необхідно застосовувати не менше 5-7 разів на день, що небажано. Все це частково знецінює крапельний метод лікування хвороб очей.

Використання очних лікувальних мазей дозволяє зменшити кількість уведень ліків у кон'юнктивальний мішок до 2-3, але при цьому мазь перешкоджає доступу кисню з повітря в тканини кон'юнктиви і рогівки, що вважається певним недоліком даного методу лікування, а також порушує структуру захисної слізної плівки на поверхні епітелію.

Усі згадані лікувальні недоліки можуть бути усунені при застосуванні очних лікувальних плівок, зокрема виготовлених на желатиновій основі.

Очні лікувальні плівки (ОЛП) виготовляли за методом В.І. Завірюхи і В.І. Саєвича. ОЛП виготовляли з харчового желатину, до якого додавали 0,03 % агар-агару і 1 % гліцерину. Желатин заливали дистильованою водою і витримували 1 год. Після набухання желатин розплавляли на водяній бані при температурі 60 оС. Одночасно в іншій посудині розчиняли агар-агар, змішували його з желатином, охолоджували до температури 40 - 45 оС, після чого додавали вибрану лікарську речовину. Після розчинення лікарської речовини додавали гліцерин і виготовляли плівки.

Піпеткою на 1 мл суміш накапували по 0,2 мл в одну точку на чисте скло нагріте до 50 оС, рівномірно вкрите тонким шаром ланоліну (ланолін не окиснюється при зберіганні плівок). Через 24 год маса загусала і з неї формували плівки овальної форми діаметром 2 та 1 см. Плівки, що висохли, знімали зі скла, вміщували у чисті флакони з-під антибіотика і зберігали у темному місці, краще в холодильнику.

Лікувальну ефективність ОЛП трьох видів апробовували на молодняку великої рогатої худоби, хворого на гнійний кон'юнктивокератит, трьох дослідних груп по 15 голів у кожній, підібраних за принципом аналогів. Досліджували плівки із умістом: 1) 3 % тетрацикліну гідрохлориду, 2) 3% ципрофлоксацину, 3) 3 % наночасток Ag, Cu, Zn, Mg, Co.

Бактеріологічним дослідженням за Берджі у якості збудників нагноєння виявлено стафілококи, стрептококи, кишкову та синьогнійну палички, а також протей у різноманітних комбінаціях.

Усі згадані недоліки усуваються, по перше, при застосуванні очних желатинових лікувальних плівок, по друге, введенням до їхнього складу вдало підібраного набору наночасток металів. При цьому желатинова основа плівок, взаємодіючи з протеолітичними ферментами патогенних мікроорганізмів, зменшує кератолітичний ефект останніх.

Страницы: 1, 2


© 2010 Рефераты