5.1.1 Требования при выполнении немеханизированных работ
5.1.2 Требования при выполнении механизированных работ
5.1.3 Требования безопасности в агрохимической лаборатории
5.2 Охрана природы
ВЫВОДЫ
ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЯ
ВВЕДЕНИЕ
Почвы являются одним из основных компонентов природной среды, и в их свойствах отражаются сложные взаимодействия биосферы с литосферой.
Почвенные процессы влияют на растительный покров и фауну, формируют растительные ассоциации, образуют верхнюю активную оболочку земного шара. Поэтому почвы как важнейший компонент экосистем требуют бережного отношения.
В настоящее время негативному воздействию антропогенного фактора уделяется большое значение. Однако воздействие этого фактора на фоне естественных неблагоприятных условий развития почв значительно усиливается. Это совокупное влияние условий внешней среды на уровень плодородия наиболее отчетливо проявляется на примере рельефа, который в Челябинской области весьма разнообразен. Эта проблема, в связи с развитием эрозионных процессов, в настоящее время изучается.
В институте агроэкологии также имеется возможность для изучения этой проблемы. Возможность изучать ландшафты, растительность, почвы и другие естественноисторические объекты появилась благодаря организации в институте геолого-почвенных экспедиций. Первая экспедиция была организована в 2001г. в южные районы Челябинской области. В ходе этой экспедиции проведены полевые почвенные исследования лесостепной и степной зон Челябинской области.
В основу данной работы положена часть результатов полевых и лабораторных исследований, проведенных в Брединском районе. Камеральные работы проведены в 2001-2003гг.
Целью работы является изучение зональных почв степной зоны Челябинской области, находящихся на склонах.
При этом решались следующие задачи:
- изучение рельефа;
- выявление морфологических особенностей черноземов южных в зависимости от рельефа;
- изучение свойств и состава чернозема южного в пашне по геоморфологическому профилю;
- определение влияния распашки на деградацию зональных почв.
Почвы, результаты исследований которых, изложены в данной работе, представлены в геолого-почвенном музее в виде монолитов.
Поэтому актуальность данной работы связана не только с необходимостью познания процессов деградации почв, но и с созданием картотеки для почвенного музея института агроэкологии, в котором в настоящее время находится около 600 экспонатов. Это позволит будущим специалистам не только увидеть особенности почвенного покрова, но и понять экологические связи природы и человека, заставит задуматься над проблемами глобальной сегодня деградации почв.
1 ОБЗОР ЛИТЕРАТУРЫ
1.1 Формы рельефа
Рельефом называется совокупность неровностей земной поверхности. Раздел геологии изучающий формы рельефа Земли и закономерности их развития, развившийся в самостоятельную отрасль знания, называется геоморфологией.
В зависимости от соотношения высот возвышенного и пониженного участков различают следующие формы рельефа:
мегарельеф - самые крупные элементы рельефа земной поверхности (материки, их составные части);
макрорельеф - крупные неровности земной поверхности с колебаниями высот до нескольких сотен и тысяч метров (равнины, плато, горные системы);
мезорельеф - неровности земной поверхности средние по размерам, с амплитудами высот до нескольких десятков метров (увалы, холмы, долины, лощины, террасы);
микрорельеф - мелкие формы рельефа, комплекс неровностей земной поверхности с колебаниями высот в пределах одного метра (западины, блюдца, бугорки);
нанорельеф - мелкие формы рельефа (кочки, неровности, связанные с обработкой почвы) высотой до нескольких десятков сантиметров (А.Т. Цуриков, 1986).
Рельеф создается в результате одновременного воздействия на земную поверхность эндогенных (тектонических) и экзогенных сил, возбуждающих деятельность денудационных процессов: текущей воды, ветра, льда, гравитационных сил и др. Эндогенные силы создают крупные неровности, а экзогенные - разрушают и понижают положительные формы рельефа, заполняют продуктами разрушения отрицательные формы.
Рельеф играет большую роль в процессах функционирования биосферы и в почвообразовании (Н.Ф. Ганжара, 2001).
Наиболее важное деление рельефа по внешним (морфологическим) признакам следующее.
Равнины - слабо расчлененные участки суши. В зависимости от абсолютной высоты различают равнины низменные, возвышенные и нагорные.
Сильно расчлененные (пересеченные) местности от равнин отличаются тем, что разности высот отдельных точек поверхности могут достигать значительных величин.
По амплитуде высот или вертикальной расчлененности рельефа выделяются местности холмистые (увалистые), гористые и горные.
Как на равнинах, так и на холмистых, гористых и горных поверхностях различают неровности или элементарные формы двух категорий: положительные или выпуклые (гривы, холмы, увалы, горы) и отрицательные или вогнутые (понижения, котловины, долины, впадины).
По высотному (абсолютному и относительному) положению поверхностей суши выделяются: депрессии - участки суши, залегающие ниже уровня моря; низменности - территории, поднятые над уровнем моря на высоту от 0 до 200м; возвышенности и низкие горы - поверхности, характеризующиеся небольшой амплитудой относительных высот (менее 500м) при небольшой абсолютной высоте; среднегорный рельеф - с глубиной расчленения от 500 до 1500-2000 м; высокогорный рельеф - характеризуется наибольшей амплитудой как относительных, так и абсолютных высот (больше 2000м). По этому же признаку всю поверхность земной суши можно разделить всего на два типа территорий: негорные территории и горы (А.Ф. Цыганенко, 1972).
1.2 Рельеф как фактор почвообразования
Рельеф выступает как главный фактор перераспределения солнечной радиации и осадков, в зависимости от экспозиции и крутизны склонов, и оказывает влияние на водный, тепловой, питательный, окислительно-восстановительный и солевой режимы почв (И.С. Кауричев, 1982).
Влияние микрорельефа легко обнаруживается по величине травостоя, густоте и росту культурных растений. По микропонижениям в засушливых районах обычно наблюдается мощный травостой, в то время как на микроповышениях он менее развит. Вследствие наличия микрорельефа происходит неравномерное развитие и формирование урожаев полевых культур, поэтому на практике прибегают к нивелированию поверхности с целью создания однородных рельефных и гидрологических условий (А.Т. Цуриков, 1986).
Влияние форм мегарельефа проявляется преимущественно в регулировании распределения атмосферной влаги, переносимой крупными воздушными массами, и в изменении гидротермических условий в почвах в зависимости от абсолютной высоты (В.В. Добровольский, 1999).
Так, в горах возникает вертикальная зональность климата, растительности и почв, вследствие понижения температуры воздуха с высотой и изменения в увлажнении. Воздушные массы, приближаясь к горам, медленно поднимаются и постепенно охлаждаются, что способствует выпадению осадков. Перевалив через горы, те же воздушные массы, опускаясь, нагреваются и становятся сухими (И.С. Кауричев, 1982).
На пространствах равнин и плато происходит постепенное изменение количества атмосферных осадков по мере распространения приносящих их воздушных масс. Это создает необходимые условия для постепенной смены типов растительности и образования биоклиматических зон и подзон.
Зональное размещение этих важнейших факторов почообразования обуславливает формирование почвенных зон и подзон. Проявлению горизонтальной зональности почв благоприятствует однотипность почвообразующих пород (В.П. Ковриго, И.С. Кауричев, Л.М. Бурлакова, 2000).
Влияние форм мезорельефа и микрорельефа на почвообразование проявляется на ограниченной площади в перераспределение солнечной энергии и выпавших осадков (В.В. Добровольский, 1999).
Перераспределение солнечной энергии на поверхности зависит от расчлененности толщи, крутизны склонов и их экспозиции.
Северные склоны получают значительно меньше тепла, чем южные, поэтому хуже прогреваются, что, в свою очередь, отражается на водном режиме и характере растительности.
Выпавшие атмосферные осадки частично стекают в пониженные места. В результате почвы верхней части склонов получают меньше влаги, чем находящиеся рядом почвы понижений. Поэтому в отрицательных формах рельефа часто происходит переувлажнение и заболачивание почв.
С рельефом также тесно связан уровень грунтовых вод. На возвышенных местах они опущены на большую глубину, чем в понижениях. Близкое залегание грунтовых вод на пониженных участках приводит к образованию болот, а при засоленности грунтовых вод в условиях жаркого сухого климата - к формированию засоленных почв (А.Ф. Цыганенко, 1972).
Поэтому расположенные в одном и том же ландшафте, часто разделенные лишь десятками метров почвы отрицательных и положительных элементов рельефа существенно отличаются водно-воздушным режимом, значениями рН, содержанием подвижных форм химических элементов, особенностями большого и малого круговорота веществ.
1.3 Влияние рельефа на эрозионные процессы
Рельеф оказывает большое влияние на развитие эрозионных процессов. В условиях склоновых форм рельефа возможно проявление водной эрозии, то есть смыва и размыва почвы. Равнинные формы рельефа в районах с засушливым и континентальным климатом благоприятствуют возникновению ветровой эрозии (И.С. Кауричев, 1982).
Возникновение водной эрозии тесно связано со стоком дождевых и талых вод, которая начинает формироваться на местности, имеющей уклон. Уклон местности определяется по формуле:
, (1)
где I - уклон местности;
H - разность высот верхней и нижней частей склона (м);
L - горизонтальное проложение данной части склона (м).
Уклон выражают дробью (натуральное выражение), а крутизну в градусах.
Процессы эрозии начинают развиваться при крутизне склона 0,5-2о. С увеличением крутизны склона повышается скорость стекания поверхностных вод, а, следовательно, и интенсивность эрозии.
На склонах крутизной 2-6о эрозия заметно усиливается, а при крутизне от 6о до 10о она проявляется в полной мере (П.С. Захаров, 1971).
Эрозии в той или иной степени подвержены почвы всех природных зон Челябинской области. Общая площадь эродированных и потенциально опасных к эрозии земель составляет 1441,8 тыс. га или 43% сельскохозяйственных угодий. Водная эрозия проявляется в основном в горно-лесной зоне. На территориях районов других зон почвы также подвержены водной эрозии, так как около 1,14 млн. га земель Челябинской области имеют уклон 1-3о и 500 тыс. га - свыше 3о (Кирин Ф.Я., 1991).
Земли, подверженные дефляции, выявлены преимущественно в степной зоне. На них приходится 38% сельскохозяйственных угодий. Развитию ветровой эрозии на территории степной зоны способствуют большая распаханность почвенного покрова, его генетический состав, характер почвообразовательных пород и рельефа.
Значительное влияние на процессы смыва оказывает не только крутизна склона, но и его форма (рисунок 1). На прямых склонах процесс эрозии вниз по уклону увеличивается в связи с увеличением массы стекающей воды. Разрушающая сила стекающей воды нарастает постепенно. Выраженный смыв проявляется приблизительно от середины склона.
На выпуклых склонах эрозия сильнее выражена в нижней части, где находятся самые крутые участки склона. Здесь, кроме увеличения массы стекающей воды, происходит повышение и скорости её стекания, поэтому эрозия резко возрастает.
Склоны вогнутой формы характеризуются наиболее выраженными эрозионными процессами в верхней части склона, которая является более крутой. Книзу эрозия уменьшается, в связи с чем, здесь может происходить аккумуляция смытого выше материала.
Считается, что если у прямого склона смыв почвы принять за единицу, то у выпуклого он будет составлять одна целая пять десятых, а у вогнутого - ноль целых пять десятых (П.С. Захаров, 1971).
Сложные склоны состоят из прямых, вогнутых и выпуклых участков, эрозия здесь протекает неравномерно, в зависимости от формы участка.
На степень проявления водной эрозии оказывает влияние длина склона (таблица 1).
Таблица 1
Классификация склонов по длине
Название склонов по длине
Протяженность, м
чрезвычайно короткие
менее 50
очень короткие
50-100
короткие
100-200
средней длины
200-500
повышенной длины
500-1000
длинные
1000-2000
очень длинные
2000-4000
чрезвычайно длинные
более 4000
Увеличение длины склона вызывает возрастание массы воды, поступающей к нижней части склона, в связи, с чем усиливается разрушительная энергия потока.
Исследования, проведенные Новосильской опытно-овражной станцией, показали, что общий размер смыва почвы при снеготаянии увеличивается пропорционально длине склона в степени одна целая пять десятых (М.Н. Заславский, 1987).
Большое влияние на почвообразование, дифференциацию почвенного покрова и сельскохозяйственное использование почв оказывает крутизна склонов (таблица 2).
Таблица 2
Классификация склонов по крутизне поверхности
Виды склонов
Крутизна, градусы
Очень пологие
менее 1
Пологие
1-2
Покатые
2-5
Сильнопокатые
5-8
Крутые
8-20
Очень крутые
20-45
Обрывистые
более 45
Обычно склонам в 5-8о соответствует сильная степень смытости почв, склонам в 4-6о - средняя, склонам 1-2о - слабая, а при склонах менее 1о смыв почв почти отсутствует (Н.Ф. Ганжара, 2001).
Земли, подверженные дефляции, выявлены преимущественно в степной зоне. На них приходится 38% сельскохозяйственных угодий. Развитию ветровой эрозии на территории степной зоны способствуют большая распаханность почвенного покрова, его генетический состав, характер почвообразующих пород и рельефа.
Ветровая эрозия возникает при любой форме рельефа. Ветер разносит продукты эрозии в различном направлении, даже вверх по склону. В первую очередь ветровой эрозии подвергаются выпуклые участки поверхности и ветроударные склоны. Чем круче ветроударный склон, тем больше скорость ветра и сильнее разрушение почвы (А.С. Извеков, П.Н. Рыбалкин, 1975).
Экспозиция склона определяет приток солнечной энергии, это влияет на микроклимат склона, развитие и продуктивность растительного покрова, что в свою очередь сказывается на проявлении эрозии. Южные и западные склоны больше страдают от эрозии, чем северные и восточные.
На южных склонах более резко выражены колебания температур и влажности почвы, чем на склонах других экспозиций. Летом склоны сильно нагреваются и иссушаются, а растительность на них выгорает. У почв южных склонов, как правило, гумусовый горизонт имеет меньшую мощность. Все это приводит к усилению эрозии (П.С. Захаров, 1971).
Восточные и западные склоны по проявлению эрозии занимают промежуточное положение, но западные склоны лучше освещаемые, нагреваются несколько сильнее восточных, поэтому больше подвержены эрозии.
Водная и ветровая эрозии наносят большой вред сельскому хозяйству.
Вследствие смыва водой безвозвратно теряются самые плодородные слои почвы и вымываются в реки и моря огромные количества элементов питания растений (И.С. Кауричев, 1982).
С полей бывшего СНГ ежегодно сбрасывается 3330 км3 поверхностных вод. Они смывают 2-3 млрд. т. мелкозема, а с ним теряется около 100млн. т. гумуса: 5.4 млн. т.- N; 1.8 - P; 36 млн. т. - K. В том числе 460 тыс.т. нитратного и аммиачного азота, 240 - подвижного фосфора и 480 тыс.т. - обменного калия (В.А. Беляев, 1976, С.Н. Юркин, 1978).
При эрозии резко ухудшаются водно-физические свойства почвы, что значительно сокращает их способность быстро поглощать и удерживать воду осадков. В связи с этим на склонах со смытыми почвами поверхностный сток бывает большим, особенно при выпадении ливней.
Смытые почвы имеют меньше фракций ила (частицы менее 0,001мм) и физической глины (частицы менее 0,01мм). В них накапливаются более грубые механические элементы, главным образом, песок (0,25-0,05мм). Обычно с увеличением смытости почв увеличивается её бесструктурность. Чем больше смыты почвы, тем значительнее убывает их порозность. У таких почв ухудшается водопроницаемость и аэрация. Чем сильнее смыты почвы, тем меньше влаги они поглощают (Ф.А. Миронченко, 1976).
Вследствие потери почвой питательных веществ и ухудшения водно-физических свойств происходит снижение урожаев. Только на эродированных землях Центрально-Черноземной зоны недобор продукции растениеводства ежегодно составляет в пересчете на зерно 12,2 млн. ц (В.Д. Иванов, 1984).
В результате развития эрозии почв происходит не только количественное снижение урожая, но и ухудшается его качество, уменьшается масса тысячи зерен и изменяется его биохимический состав. Наибольшее уменьшение абсолютного веса зерна наблюдается в засушливые годы, наименьшее - во влажные.
Следует также отметить большую засоренность сорняками смытых почв в связи с тем, что на эродированных почвах сомкнутость культурных растений уменьшена, создаются благоприятные условия для развития сорняков. На среднесмытых почвах засоренность полей в 2-4 раза больше, чем на несмытых.
Смытые почвы имеют следующие общие признаки и свойства: уменьшение мощности, более светлая окраска профиля и небольшая глубина залегания карбонатов, в сравнении с неэродированными почвами; накопление в верхнем горизонте частиц размером более 0,05 мм; уменьшение содержания органического вещества; уменьшение прочности и количества водопрочных агрегатов; ухудшение водного, воздушного, теплового режимов; уменьшение численности почвенных микроорганизмов по сравнению с неэродированными почвами; повышение липкости, пластичности и сопротивляемости при обработке.
Перечисленные свойства эродированных почв в совокупности определяют производительность участков с различной степенью смытости, что, в конечном счете, влияет на величину и качество урожая.
2 ХАРАКТЕРИСТИКА МЕСТА И УСЛОВИЙ РАБОТЫ
Климат Челябинской области определяется положением её в центре Евро-Азиатского материка, большим удалением от морей и океанов. На формирование климата существенное влияние оказывают Уральские горы, которые создают препятствие на пути движения воздушных атлантических масс. Все это определяет значительную континентальность и сухость климата (Ф.Я. Кирин, 1973).
По основным агроклиматическим показателям на территории Челябинской области выделяются три зоны: 1) горно-лесная увлажненная, 2) лесостепная с двумя подзонами - умеренно увлажненная северная лесостепь и полузасушливая южная лесостепь, 3) степная засушливая (А.И. Левит, 2001).
Почвенно-полевые исследования проводились в северной части Брединского района, расположенного в степной природной зоне Челябинской области, климат которой является теплым (рисунок 2) и засушливым (рисунок 3).
Среднесуточная температура выше 10оС наступает 5-7 мая. Осенью этот уровень она переходит 18-20 сентября. Таким образом, продолжительность активной вегетации растений составляет 135-140 дней. За это время накапливается 2100-2300ОС положительных температур. Последние заморозки весной приходятся на 19-23 мая, а осенью на 13-17 сентября.
Поэтому период без заморозков в воздухе и на поверхности почвы составит соответственно 110-120 дней и 80-100 дней. Общая обеспеченность теплом достаточна для выращивания не только яровой пшеницы, но и более требовательных к теплу культур (подсолнечник, гречиха, просо, кукуруза).
Зима на территории степной зоны Челябинской области малоснежная и морозная. Высота снежного покрова обычно не превышает 20 см, а абсолютный минимум температур в воздухе достигает минус 44оС. Почва глубоко и сильно промерзает (А.П. Козаченко, 1997).
Климатические условия здесь характеризуются ветрами разной силы и скорости, которые действуют в течение почти всего года (300-320 дней). Здесь часты бураны, пыльные бури (А.И. Левит, 2001).
Рельеф местности представлен сочетанием вытянутых увалов и плоских водоразделов высотой от 200 до 400 м.
Почвообразующие породы представлены желто-бурыми карбонатными суглинками, поэтому почвы характеризуются повышенным содержанием карбонатов кальция в нижней части перегнойного горизонта.
Травянистая растительность представлена на севере зоны разнотравно-ковыльно-типчаковыми ассоциациями (тонконог, ковыли, типчаки, тысячелистник, подорожник, земляника). В настоящее время степь сильно распахана, природная растительность сохранилась на небольших площадях (И.И. Плюснин, Голованов А.И., 1983).
Сочетание рельефа, климата, почвообразующих пород и растительности обеспечило развитие следующих почвообразовательных процессов: дернового, солонцового и солончакового. В связи с этим почвенный покров степной зоны является комплексным
Природные условия степной зоны Челябинской области способствуют развитию эрозионных процессов.
В данной работе представлены результаты исследования зональных почв степной зоны Челябинской области - черноземов южных, расположенных на склонах.
3 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
3.1 Методика проведения исследований
Исследования проводились на поле в Брединском районе, которое находится под уклоном. Склон сложный, с начала поля до середины наклон составил 4о, затем пологая часть сменяется более крутым наклоном (7о).
Для проведения исследований использовали метод заложения почвенно-геоморфологических профилей (В.В. Добровольский, 1982).
Сущность метода заключается в заложении разрезов на характерных элементах рельефа. А результаты исследования почв, растительности по почвенно-геоморфологическим профилям можно переносить на другие площади природной зоны с аналогичным рельефом. Это позволяет экономить время при картографировании, познании закономерностей распространения почв.
В полевых условиях изучали плотность сложения по Качинскому. Влажность почв определяли термостатно-весовым методом (В.В. Добровольский, 1982).
При морфологическом описании профилей почв одновременно отбирались образцы, в которых определялись свойства лабораторными методами.
В лабораторных условиях, в общекафедральной лаборатории и лаборатории химии почв, выполнены следующие анализы почв по общепринятым методикам (А.А. Яскин, 1999):
гранулометрический состав сокращенный по Качинскому;
содержание гумуса по Тюрину в модификации ЦИНАО;
плотность твердой фазы пикнометрическим методом;
содержание N-NO3 ионно-селективным методом;
содержание Р2О5 по Чирикову;
содержание К2О по Чирикову;
рН колориметрическим методом;
Расчетным методом определены:
порозность общая и порозность аэрации;
запасы гумуса;
общие запасы влаги;
почвенно-экологическая оценка.
Методика определения почвенно-экологической оценки и бонитировки почв разработана в Почвенном институте РАСХН (И.И. Карманов, 1985).
Методика позволяет оценивать состояние почв пашни и других угодий.
Почвенно-экологическая оценка проводится на основании свойств почв и климатических показателей.
В основу положен расчет почвенно-экологического индекса (Пэи) по формуле, предложенной Л.Л.Шишовым и другими (Л.Л. Шишов, 1991):
, (2)
где Пэи - почвенно-экологический индекс;
12,5 - постоянный множитель;
2 - максимально возможная плотность сложения;
V - плотность сложения почвы в среднем для метрового слоя, г/см3;
П - «полезный» объем почвы в метровом слое;
ДС - дополнительно учитываемые свойства почв: содержание гумуса, рН водной вытяжки, степень эродированности почв и др.;
Уt>10 - среднегодовая сумма температур более 10оС;
КУ - коэффициент увлажнения: для степной зоны - 4,9;
Р - поправка к коэффициенту увлажнения;
КК - коэффициент континентальности;
А - итоговый агрохимический показатель - содержание элементов питания.
3.2 Результаты исследований
На исследуемом склоне были заложены четыре разреза: первый - на целине, остальные на пашне в верхней, в средней и нижней частях склона (рисунок 4).
Морфологическое описание заложенных разрезов приводится ниже.
Рисунок 4 - Почвенно-геоморфологический профиль
Разрез 1 (целина).
АД дернина.
А гумусово-аккумулятивный, темно-серый с буроватым оттенком, холодит, средний суглинок, комковатый, густо пронизан корнями растений, слабо уплотнен, тонкопористый, переход очень постепенный.
В1 гумусово-переходный, буровато-серый, влажный, средний суглинок, комковатый, пронизан корнями растений, уплотнен, тонкопористый, вскипает от соляной кислоты в нижней части, карбонаты в виде пропитки, переход постепенный.
В2 горизонт затеков, неоднородный бурый с затеками гумуса, влажный, средний суглинок, призматический, пронизан корнями растений, уплотнен, тонкопористый, вскипает от соляной кислоты, карбонаты кальция в виде пятен и пропитки, переход постепенный.
В3 карбонатный горизонт, бурый с белесыми пятнами, холодит, средний суглинок, корни растений редки, плотный, тонкопористый, вскипает от соляной кислоты, карбонаты в виде белоглазки, переход заметный.
С ниже 82 материнская порода, палевый, влажный, легкий суглинок, призматический, плотный, тонкопористый, бурно вскипает от соляной кислоты, карбонаты в виде белоглазки.
Почва: чернозем южный среднемощный среднесуглинистый на делювиальном суглинке.
Разрез 2 (пашня, верхняя часть склона).
АПАХ пахотный горизонт, темно-серый с буроватым оттенком, сухой, комковато-пылеватый, средний суглинок, рыхлый, тонкопористый, остатки стерни, корни растений, переход заметный по плотности.
А гумусово-аккумулятивный горизонт, темно-серый с буроватым оттенком, влажный, пылевато-комковатый, средний суглинок, уплотнен, тонкопористый, корни растений, переход постепенный.
В1 гумусово-переходный, буровато-серый, влажный, крупнокомковатый, среднесуглинистый, плотный, тонкопористый, корни растений, вскипает от соляной кислоты в нижней части, карбонаты в виде пропитки, переход постепенный.
В2 горизонт затеков, белесовато-бурый с белыми пятнами, холодит, призматический, средний суглинок, плотный, тонкопористый, корни растений, бурно вскипает от соляной кислоты, карбонаты в виде белоглазки, переход заметный.
В3 карбонатный горизонт, бурый с белесыми пятнами, холодит, призматический, средний суглинок, плотный, тонкопористый, вскипает от соляной кислоты, карбонаты в виде белоглазки, переход заметный.
С ниже 82 см аналогичен горизонту С разреза 1.
Почва: чернозем южный среднемощный среднесуглинистый слабоэродированный на делювиальном суглинке.
Разрез 3 (пашня, средняя часть склона).
АПАХ пахотный горизонт, буровато-серый, сухой, комковато-пылеватый, легкий суглинок, рыхлый, тонкопористый, корни растений и пожнивные остатки.
В1 гумусово-переходный горизонт, буровато-серый, влажный, крупнокомковатый, средний суглинок, плотный, тонкопористый, корни растений, вскипает от соляной кислоты, карбонаты в виде пропитки, переход заметный по цвету и структуре.
В2 горизонт затеков, неоднородный, бурый с серыми потеками, влажный, призматический, средний суглинок, плотный, тонкопористый, корни растений, вскипает от соляной кислоты, карбонаты в виде пропитки, переход заметный.
В3 карбонатный горизонт, белесовато-бурый с белыми пятнами, холодит, призматический, средний суглинок, плотный, тонкопористый, корни растений, вскипает от соляной кислоты, карбонаты в виде белоглазки, переход заметный.
С ниже 66 см аналогичен горизонту С разреза 1.
Почва: чернозем южный маломощный легкосуглинистый среднеэродированный на делювиальном суглинке.
Разрез 4 (пашня, нижняя часть склона).
АПАХ пахотный горизонт, темно-серый, сухой, комковато-пылеватый, тяжелый суглинок, рыхлый, тонкопористый, пожнивные остатки и корни растений, переход заметный по плотности.
А гумусово-аккумулятивный, темно-серый, влажный, призматически-комковатый, тяжелый суглинок, корней много, переход очень постепенный. В1 гумусово-переходный, темно-серый с буроватым оттенком, влажный, ореховатый, тяжелый суглинок, плотный, тонкопористый, корней много, переход очень постепенный.
В2 горизонт затеков, неоднородный по цвету, бурый с белесоватым оттенком, с серыми затеками, влажный, комковато-ореховатый, плотный, тяжелый суглинок, тонкопористый, вскипает от соляной кислоты, карбонаты в виде пятен и пропитки, корни, переход постепенный.
В3 карбонатный горизонт, бурый с белесыми пятнами, влажный, призматический, тяжелый суглинок, плотный, бурно вскипает, карбонаты в виде белоглазки, переход заметный.
С ниже 107 см аналогичен горизонту С разреза 1.
Почва: чернозем южный мощный тяжелосуглинистый на делювиальном суглинке.
По представленным выше морфологическим описаниям разрезов видно, что по склону меняется цвет поверхностных горизонтов почвы. Самая темная почва (темно-серая) находится в нижней части склона, самая светлая - в средней части склона (рисунок 4). По склону меняется не только окраска верхнего пахотного горизонта, но и мощность гумусового горизонта (А+В1): в верхней части склона она составляет 42 см, в средней части - 30 см, в нижней части склона - 57 см. Также видно, что при сельскохозяйственном использовании мощность гумусового горизонта уменьшается на 5 см (таблица 3).
Глубина вскипания от соляной кислоты и глубина максимального накопления карбонатов также различны: в верхней части склона - 41 см и 65 см, в средней - 32 см и 41 см, в нижней - 68 см и 81 см соответственно.
На целине глубина вскипания от соляной кислоты и глубина максимального накопления карбонатов ниже, в сравнении с аналогом в пашне (45 см и 68 см соответственно).
Уменьшение мощности гумусового горизонта, повышение глубины вскипания от соляной кислоты и максимальной глубины накопления карбонатов в пашне, по сравнению с аналогом на целине, свидетельствует о негативном влиянии сельскохозяйственной деятельности на почву.
В средней части склона, крутизна которого составляет 7О, эрозионные процессы проявляются наиболее сильно. Здесь наименьшая мощность гумусового горизонта (30 см), а карбонаты залегают выше (41 см), чем в других разрезах.
В нижней части склона морфологические признаки почв свидетельствуют о наличии процессов аккумуляции продуктов смыва.
Гранулометрический состав. Этот показатель является одним из факторов плодородия. Он влияет на многие агрономические свойства, такие как водопроницаемость, плотность почвы, теплоемкость, поглотительная способность и другие (В.Ф. Моисейченко, 1996).
Поэтому необходимо рассмотреть, как меняется гранулометрический состав по склону: в верхней части склона почва среднесуглинистая, в средней части - легкосуглинистая и в нижней части - тяжелосуглинистая (таблица 3).
Такие изменения гранулометрического состава объясняются смывом водой и сносом ветром мельчайших частиц со склона вниз, где они и аккумулируются.
Заметны изменения в профилях чернозема южного после распашки в отношении гранулометрического состава. Горизонт АПАХ в верхней части склона, в сравнении с горизонтом А на целине, становится легче (таблица 3). Это связано с воздействием сельскохозяйственной техники на почвенную структуру.
Плотность сложения почвы зависит от упаковки почвенных частиц, гранулометрического состава и содержания органического вещества.
Исследованные черноземы южные после весенней обработки имеют благоприятную плотность сложения (1,03-1,10 г/см3) в пахотном горизонте по всему склону (таблица 3). Однако в подпахотном горизонте плотность резко возрастает (1,26-1,40 г/см3), что является результатом постоянной обработки почвы на одинаковую глубину.
Содержание гумуса также повлияло на плотность подпахотного горизонта (таблица 3). Так, в средней части склона, при пониженном содержании гумуса (2%), плотность составила 1,40 г/см3, в то время как в нижней и верхней частях склона при более высоком содержании гумуса (5,6% и 4,0% соответственно) плотность почвы ниже - 1,26 г/см3 и 1,32 г/см3.
Увеличение плотности в средней части склона объясняется и облегчением гранулометрического состава (таблица 3) вследствие смыва мелкозема.
В нижележащих горизонтах плотность сложения увеличивается в соответствии с уменьшением содержания органического вещества и составляет 1,45-1,51 г/см3.
На целине изменение плотности по профилю идет менее резко по сравнению с аналогом в пашне (таблица 3). Это объясняется отсутствием механических обработок и более равномерным распределением корневых систем растений.
Плотность твердой фазы увеличивается вниз по профилю в соответствии с падением содержания гумуса (таблица 3). Рассматривая её изменения в зависимости от рельефа видно, что плотность твердой фазы почвы при аккумуляции органического вещества в нижней части склона понижается (2,58 г/см3), а на эродированном склоне при сносе органики происходит её увеличение (2,63 г/см3).
Плотность твердой фазы в горизонте А на целине ниже в сравнении с аналогом в пашне (таблица 3). Это объясняется снижением содержания гумуса при распашке.
Порозность. Изменения плотности сложения и плотности твердой фазы отражаются на порозности почв (таблица 3). В пахотном, наиболее обогащенном гумусом горизонте общая порозность составляет по склону 58-60%. С глубиной она уменьшается до 45-47%.
Рассматривая порозность почв в зависимости от рельефа, видно, что на склоне (в средней части) в подпахотном горизонте она достигает низкой величины (47%). Понижение порозности в наиболее эрозионно-опасном месте уменьшает впитывание стекающей по склону воды и способствует усилению водной эрозии.
Использование чернозема южного в пашне увеличивает общую порозность в пахотном горизонте на 4% в сравнении с горизонтом А аналога на целине. С глубиной на целине уменьшение общей порозности идет более равномерно по сравнению с пашней (таблица 3).
Порозность аэрации уменьшается с глубиной (от 39% до 20% от общей порозности в пашне).
При этом в подпахотном горизонте наблюдается резкое уменьшение порозности аэрации (таблица 3). Это объясняется уплотнением и уменьшением крупных пор при сельскохозяйственном использовании.
Структура почвы представляет собой совокупность агрегатов различной величины и формы, порозности, механической прочности и водопрочности, характерных для каждой почвы и её горизонтов (Н.А. Качинский, 1970).
Агрономически ценными агрегатами являются не все, а только размером от 0,25 мм до 10 мм. Содержание мезоагрегатов в поверхностном слое пашни, как показывает таблица 4, наибольшее в нижней части склона (83,8%), наименьшее - в средней части (71,1%).
Объясняется это тем, что илистые частички смываются и аккумулируются в нижней части склона. Именно они и гумусовые вещества, содержание ко торых также изменяется по склону, играют большую роль в образовании агрономически ценных агрегатов.
Таблица 4
Структурный состав почв
Горизонт
Глубина взятия образца, см
Размер агрегатов, мм
макроагрегаты, >10 мм
мезоагрегаты
микроагрегаты, <0,25 мм
10-5
5-3
3-2
2-1
1-0,25
сумма
Чернозем южный (целина)
А 0-10
8,5
13,8
17,9
14,7
19,2
23,5
89,1
2,4
Чернозем южный (пашня, верхняя часть склона)
А 0-10
21,1
14,5
10,9
10,4
10,2
30,5
76,5
2,4
Чернозем южный (пашня, средняя часть склона)
А 0-10
27,8
12,5
7,1
4,6
10,5
35,4
71,1
2,1
Чернозем южный (пашня, нижняя часть склона)
А 0-10
15,1
11,7
17,7
16,2
16,4
21,7
83,8
1,1
В черноземе расположенном на целине сумма мезоагрегатов больше, чем у его аналога в пашне на 12,6% (таблица 4). Это объясняется тем, что при распашке происходит разрушение мезоагрегатов и почва более подвержена воздействию эрозионных процессов.
Эрозионноопасных частиц (менее 1 мм), в зависимости от рельефа, содержится больше всего в почве в средней части склона (37,5%), меньше - в нижней части склона (22,8%). Такое распределение по склону объясняется смывом и сдуванием этих частиц с верхней и средней частей склона в нижнюю.
При распашке черноземов южных наблюдается увеличение количества эрозионноопасных частиц на 7%, что связано с сельскохозяйственными обработками и отсутствием естественной растительности.
Получение урожая сельскохозяйственных культур практически связано с весенними запасами влаги.
Естественная влажность по склону значительно колеблется (таблица 5).
Так, в верхней части склона она составляет 17,7%, в средней - 9,4%, в нижней - 22,7%.
Данные по запасам общей влаги (таблица 5) показывают, что их количество значительно различается в зависимости от части склона, что объясняется как сформированными свойствами, так и геоморфологическими особенностями.