Рефераты

Курсовая работа: Переработка вторичного сырья: инструментальных сталей, осколков и пыли на основе твердых сплавов карбида вольфрама

WC + 2,5О2 = WO3 + СО2

TiC + 2О2 = ТЮ2 + СО2 3) Со + 0,5О2=СоО 4) Zn + 0,5O2= ZnO 5) 2Cu+0,5O2 = Cu2O 6) Ре+1,5О2 = Ре2Оз

0,5Cu2O +%О2 = CuO

2СоО + 0,5О2 = Со2О3

Fe + 0,5О2 = FeO

4.4.1.2. Расчет термодинамических величин протекания реакций окисления [5]

ДН7з=ЛН298+298Р173*ЛСр*с1Т

AHi173=AH298+ а*(1173-298) +1/2* Ь*10'3*(1173-298) 2 - с*105*1/Т

1) WC + 2,502 = W03 + СО2

ДН298=-20146-94,05+9,67= - 285840 кал/моль

АСр=(17,58+10,55-2,5*7,52-12,27) +(6,79+2,16-2,5*0,81-2,06) *10-3*Т+(0-2,04 + 0,9 *2,5+ 2,68) *105/Т2=-2,94+4,86*10"3*Т+2,89*107Т2

AHii73=-285840-2,94*875+4,86*10'3*1287125/2-2,89*105*(-0,0025) = - 284553,8= - 1190,5кДж/моль

2) TiC + 2О2 = TiO2 + СО2 ДН298=-225,8-94,05+43,9= - 245950 кал/моль

АСр=(17,97+10,55-2*7,52-13,296) +(0,28+2,16-2*0,81+1,944) *10-3*Т+(-4,35+2,04+4,212+0,912) *105/Т2=0,184+2,764*10-3*Т+2,35*105/Т2 АНц7з=-245950+0,184*875+2,764*10-3*1287125/2-2,35*105*(-0,0025) = - 243423,0= - 1018,5кДж/моль

3) Со + 0,5О2=СоО

АН298==-57100 кал/моль

АСр= (11,54-3,3-7,52/2) +(2,04-5,86-0,81/2) *10'3*Т+(0,4+0,9/2) *105/Т2= 4,48-4,22*

10-**Т+0,85*105/Т2

АНП7з= - 57100 +4,48*875-4,22*10'3*1287125/2-0,85*105*(-0,0025) =

-55683,3= - 232,9кДж/моль

4) Zn + 0,5O2 = ZnO

AH298=-83400 кал/моль

ДСр=(11,71-5,43-7,52/2) +(1,22-0,81/2-2,4) *10-3*Т+(-2Д8+0,9/2) *105/Т2= 2,52-1,58*

1(Г*Т-1,73*105/Т2

ЛНц7з= - 83400 +2,52*875-1,58*10-3*1287125/2+1,73 *105*(-0,0025) =

-82644= - 345,8кДж/моль

5) 2Cu+0,502 = Cu20

ДН298=-40760 кал/моль

АСр(14,9-2*5,41-7,52/2) +(5,7-2,15-0,81/2) *10-3*Т+(0+0,9/2) *105/Т2= 0,32+2,29*

1(И*Т+0,45*105/Т2

ДН„73= - 40760 +0,32*875+2,29*10-3*1287125/2-0,45*105*(-0,0025) =

-38893,7= - 162,7кДж/моль

6) Ре+1,5О2 = Ре2Оз

АН298=-197510 кал/моль

АСр=(31/2-9-1,5/2*7,52) +(1,76/2-1,5/2*0,81) *10'3*Т+(0+0,9*1,5/2) *105/Т2= 0,86+0,272*

10^*Т+0,675*105/Т2

АНц7з= - 197510 +0,86*875+0,272*10-3*1287125/2-0,675*105*(-0,0025) =-821,787кДж/моль

7) 0,5Си20 + У4О2 = СиО АН298=-18620 кал/моль

ACp(9,27-14,9/2-7,54/4) +(4,80-5,7/2-0,81/4) *10'3*T+(0+0,9/4) *105/T2=-0,06+1,75* 10-з*т+052о*ю5АГ2

АНц7з= - 18620 - 0,06*875+1,75*10-3*1287125/2-0, 20*105*(-0,0025) = - 17496,26= - 73,2кДж/моль

8) 2СоО + 0,5О2 = Со2О3 АН298=-22400 кал/моль

АСр (19,3/2-11,54-7,52/4) +(8,1/2-2,04-0,81/4) *10'3*Т+(-2,4/2-0,4+0,9/2) *105/Т2= - 3,77+1,807*

10'% -1,15*105Я2

АНц7з=-22400-3,77*875+1,807*10"3*1287125/2+1,15*105*(-0,0025) =

-24248,332= - 101,455кДж/моль

9) Fe + 0,5О2 = FeO ДНаэв^-бЗООО кал/моль

ACp=(12,38-4,18-7,52/2) +(l,62-5,92-0,81/2) *10'3*T+(-0,38+0,9/2) *105/T2= 4,44-4,7* 10'3*Т+0,07*105/Т2 AHii73=-63000+4,44*875-4,7*10'3*1287125/2-0,07*105*(-050025) =

-62122= - 259,9кДж/моль

5. Материальный баланс

Схему переработки можно разбить на 5 блоков:

Дробление и измельчение.

Грануляция и окисление в печи кипящего слоя.

Выщелачивание и фильтрация.

Осаждение и фильтрация.

Прокалка и сушка.

Схема 3. Блок схема процесса переработки карбида.

Производительность по поступающему сырью - 4т. в сутки, т.е.166,667 кг. в час. В блок 1 поступает исходное сырье, где дробится и измельчается.

5.1. Блок 2. Грануляция и окисление в печи кипящего слоя

В блок 2 поступает измельченное сырье не более 1 мм., где смешивается с не прореагировавшими карбидами и гранулируется. Крупность гранул - до 2мм.; распределение по крупности,% (масс) [3].:

(2-Й,5 мм) - 15(1,0+0,5 мм) - 35(1,5-1,0 мм) - 350,5 мм. -15

Продуктами обжига являются огарок 65%, циклонная пыль20%, пыль рукавного фильтра 15%. В огарок переходит 65% карбида, в циклонную пыль20% карбида, в пыль рукавного фильтра 15% карбида.

Степень окисления карбида в циклонной пыли 90%, в пыли рукавного фильтра 99%, необходима степень окисления в огарке 98%. Металлы Со, Zn, Cu, Fe окисляются нацело. Пыль рукавного фильтра и огарок поступают на выщелачивание, а пыль циклона идет на грануляцию. Не прореагировавший карбид также возвращается на грануляцию, т. к. при дальнейшем разделении присутствует как балласт.

Для расчета материального баланса нам необходимо знать состав исходной шихты для обжига.Т. к. после первого блока сырье гранулируется и смешивается с возвратным карбидом и пылью циклона, его состав и количество изменяются.

Таблица 5. Обозначение потоков.

Наименование потока Обозначение Значение кг/ч
Первичное сырье ХО 166,667
Шихта для обжига Х1 273,638
Возвратный карбид ог. Х21 2,082
Возвратный карбид рук. Х211 3, 202
Пыль циклона карбид Хк221 0,24
Пыль циклона оксид Хо221 30,992
Связующая вода ХН20 38,36
Связующий бентонит Хбент. 13,152

Схема 4. Потоковая схема процесса окисления карбидов.

5.1.1.Запишем уравнения используя исходные данные и принятые значения

Xi=Xo+XK2i i+XO2l 1+X21+X221

Хо=166,67

Хк211=0,2*0,1 *(0,78+0,15) *Xi

X2i=0,65*0,02*(0,78+0,15) *X1

X22i=0,15*0,01*(0,78+0,15) *Xi

0,1 - доля не окислившегося карбида в циклоне

0,02 - доля не окислившегося карбида в огарке

0,01 - доля не окислившегося карбида в рукаве

Получим:

Хк211=0,019*Xi

X2i=0,012*X!

Х221=0,001*Х!

Решение:

X1-0,019*Xi-0,012*X1-0,001*X1=166,67

0,968*Х1=166,67

Ху=172Л8 (без оксидов и связующих компонентов)

5.1.2Расчет потоков:

Поток Хк2ц равен:

Хи„=3, 202

Найдем количества веществ в этом потоке:

Xk2ii(WC): 0,2*0,78*0,1*172,18=2,686

ХииСТЮ): 0,2*0,15*0,1*172,18=0,516

Поток X2i равен:

Х2] =2,082

Найдем количества веществ в этом потоке:

X2i(WC): 0,65*0,02*0,78*172,18=1,746 X2i(TiC): 0,65*0,02*0,15*172,18=0,336

Поток X22i равен:

X22i(WC): 0,15*0,01*0,78*172,18=0, 201

X22i(TiC): 0,15*0,01*0,15*172,18=0,039

5.1.3. Расчет циклонной пыли

Количество карбида окисляемого в циклоне в виде металлов (Со, Zn, Cu, Fe), (кг/ч): 3, 202*(0,06+0,006+0,003+0,001) /(0,78+0,15) = 0,241

Количество оксидов в циклоне без учета оксидов поступающих из шихты:

X'o22i = 0,2 *0,9*Xi=30,992

Количества оксидов, (кг/ч):

По реакции (1) WO3: 0,78*30,992*231,82/195,86=28,612

По реакции (2) ТЮ2: 0,15*30,992*79,88/59,84=6, 206

По реакции (3) СоО: (0,06*(30,992+0,241)) *74,93/58,93=2,383

По реакции (4) ZnO: (0,06*(30,992+0,241)) *81,39/65,39=0,233

По реакции (5) Си2О: (0,06*(30,992+0,241)) *143,1/2*63,55=0,105

По реакции (6) Fe2O3: (0,06*(30,992+0,241)) *231,55/2*55,85=0,065

Суммарное количество оксидов, (кг/ч): 37,604

Таблица 6. Количество оксидов в циклоне без учета оксидов поступающих из шихты.

W03 ТЮ2 СоО ZnO Cu2O Fe203 всего
кг/ч 28,612 6, 206 2,383 0,233 0,105 0,065 37,604
% 76,088 16,504 6,337 0,620 0,279 0,173 100

Итоговое количество оксида в шихте:

Хо2ц=37,604+0,2*Хо2ц

0,8*Х211=37,604

Xo2i 1=47,005 кг/ч

Количество оксида приходящее из шихты в циклон:

0,2*Xo2i 1=9,401 кг/ч

Состав и количество приходящих в циклон оксидов их шихты, (кг/ч):

WO3: 9,401*0,761=7,154

ТЮ2: 9,401*0,165=1,551

СоО: 9,401*0,063=0,592

ZnO: 9,401*0,006=0,056

Cu20: 9,401*0,003=0,028

Fe2O3: 9,401*0,003=0,019

Итоговое суммарное состав и количество оксидов, (кг/ч):

WO3: 7,154 + 28,612=35,766

ТЮ2: 1,551+6, 206=7,757

СоО: 0,592+2,383=2,975

Си20: 0,028+0,105=0,133

ZnO: 0,056+0,233=0,289

Fe2O3: 0,019+0,065=0,084

5.1.4. Количество связующих веществ в исходной шихте

Количество WC в шихте, (кг/ч): 166,67*0,76+1,746+2,686+0, 201=134,636 Количество ТЮ в шихте, (кг/ч): 166,67*0,15+0,516+0,336+0,039=25,531 Количество шихты без связующих веществ, (кг/ч): 166,67+47,005+0,24+2,082,3, 202=219, 199

Количество связующих веществ 219, 199*(14%+6%) /80%:

Н2О: 219, 199*0,14/0,8=38,360 кг/ч Хшо=3 8,360 кг/ч

Бентонита: 219, 199*0,06/0,8=16,440кг/ч Распределение бентонита, (кг/ч):

огарок: 16,440*0,65=10,686

пыль циклона: 16,440*0, 20=3,288

пыль рукавного фильтра: 16,440*0,15=2,466 Хбент. =16,440 - 3,288=13,152

Таблица 7. Состав шихты поступающей на обжиг.

WC ТЮ Со Zn Си Fe W03 ТЮ2 СоО ZnO Си2О Fe2O3 Н2О бенг всего
кг/ч 134,636% 49, 202 25,531 9,330 10,000 3,654 1,000 0,365 0,500 0,183 ОД 67 0,061 35,766 13,071 7,757 2,835 2,975 1,087 0,289 0,106 0,133 0,049 0,084 0,031 38,360 14,019 16,440 6,008 273,638 100,000

5.2. Окисление карбидов

5.2.1. Окисление WC:

Распределение компонента, (кг/ч):

огарок: 134,636*0,65=87,513

пыль циклона: 134,636*0, 20=26,927

пыль рукавного фильтра: 134,636*0,15=20, 195

Основная реакция: WC + 2.5О? = WCb + ССЬ

М=195,86 М=16 М=231,82 М=44,01 (г/моль)

1) в огарке окислится: 26,927*0,9= 85,763 кг/ч Расходуется кислорода, (кг/ч):

02: 85,763*2,5*2*16/195,86=17,515

Образуется веществ, (кг/ч):

С02: 85,763*44,01/195,86=19,272

WO3: 85,763*231,82/195,86=101,509

Оксида WO3 в исходной шихте, (кг/ч): 47,005*0,65*0,761=23,251

Суммарное количество WOs, (кг/ч): 124,76

2) в циклоне окислится: 26,927*0,9=24,234 кг/ч Расходуется кислорода, (кг/ч):

О2: 24,334 * 2,5*2*1,6/195,86 = 4,949 Образуется веществ, (кг/ч): СО2: 24,334*44,01/195,86=5,445

WO3: 28,612

Оксида WO3 в исходной шихте, (кг/ч): 47,005*0,2*0,761=7,154

Суммарное количество WO3, (кг/ч): 35,76

3) в рукаве окислится: 20, 195*0,99=19,993 кг/ч

Расходуется кислорода, (кг/ч):

О2: 19,993*2,5*2*16/195,86=4,083

Образуется веществ, (кг/ч):

СО2: 19,993*44,01/195,86=4,492

W03: 19,993*231,82/195,86=23,664

Оксида WO3 в исходной шихте, (кг/ч): 47,005*0,15*0,761=5,366

Суммарное количество WO3, (кг/ч): 29,03

5.2.2. Окисление TiC:

Распределение компонента, (кг/ч):

огарок: 25,531*0,65=16,595

пыль циклона: 25,531*0, 20=5,106

пыль рукавного фильтра: 25,531*0,15=3,830

Основная реакция: TiC + 2OZ = TIP? + СО?

M=59,84 M=16 М=79,88 М=44,01 (г/моль)

1) в огарке окислится: 16,595* 0,98=10,787 кг/ч Расходуется кислорода, (кг/ч):

02: 10,787*2*2* 16/59,84=5,768 кг/ч

Образуется веществ, (кг/ч):

ТЮ2: 10,787*79,88/59,84=14,399

СО2: 10,787*44,01/59,84=7,933

Оксида ТЮ2 в исходной шихте, (кг/ч): 47,005*0,65*0,165=5,042

Суммарное количество ТЮ2, (кг/ч): 12,975

2) в циклоне окислится: 5,106*0,9 =3,319 кг/ч Расходуется кислорода, (кг/ч):

О2: 3,319*2*2*16/59,84=1,331

Образуется веществ, (кг/ч):

СО2: 3,319*44,01/59,84=2,441

ТЮ2: 6, 206

Оксида ТЮ2 в исходной шихте, (кг/ч): 47,005*0, 20*0,165=1,551

Суммарное количество ТЮ2, (кг/ч): 12,975

3) в рукаве окислится: 3,830*0,99=2,498 кг/ч Расходуется кислорода, (кг/ч):

02: 2,489*2*2*16/59,84=1,331

Образуется веществ, (кг/ч):

ТЮ2: 2,489*79,88/59,84=3,322

С02: 2,489*44,01/59,84=1,831

Оксида ТЮ2 в исходной шихте, (кг/ч): 47,005*0,15*0,165=1,163

Суммарное количество ТЮ2, (кг/ч): 4,485

5.2.3. Окисление Со:

Распределение компонента, (кг/ч):

огарок: 10*0,65=6,5

пыль циклона: 10*0,2=2,0

пыль рукавного фильтра: 10*0,15=1,5

Реакции: а) Со + 0.5От= СоО

М=58,93 М=16 М=74,93 (г/моль)

б) 2СоО + 0.5О7 = CozCb М=74,93 М=16 М=165,86 (г/моль)

Весь СоО оседает в циклоне, а Со2Оз образуется в огарке и пыли рукавного фильтра. СоО приходящий с исходной шихтой (оборотный) окисляется до Со2Оз нацело.

1) в огарке окислится: 6,5кг/ч По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 6,5* 16/58,93=1,765 Образуется веществ, (кг/ч):

Считаем, что СоО из шихты образуется 100% -98%=2%: 6,5* 2%=0,13

Из этого СоО по реакции (б) не будет доокисляться: 0,13*74,94/58,93=0,165

СоО: 6,5*74,93/58,93=8,265

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 8,965*16/165,86=0,865 Образуется веществ, (кг/ч):

СогО3: (8,265-0,165) * 165; 86/2*7,493=8; 965

Оксида СоО в исходной шихте, (кг/ч): 47,005*0,65*0,063=1,934 Со203: 1,934*165,86/2*7,493=2,140 Суммарное количество Со2Оз, (кг/ч): 11,105

2) в огарке окислится: 2,0 кг/ч

В циклоне окисление идет до СоО.

Расходуется кислорода, (кг/ч):

О2: 2,0*16/58,93=0,543

Образуется веществ, (кг/ч):

СоО: 2,383

Оксида СоО в исходной шихте, (кг/ч): 47,005*0, 20*0,0,063=0,592

Суммарное количество СоО, (кг/ч): 2,975

3) в рукаве окислится: 1,5 кг/ч По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 1,5*16/58,93=0,407 Образуется веществ, (кг/ч):

Считаем, что СоО из шихты образуется 100% -99%=1%: 1,5* 1%=0,015

Из этого СоО по реакции (б) не будет доокисляться: 0,015*74,94/58,93=0,019

СоО: 1,5*74,93/58,93=1,907

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: (1,907 - 0,019) * 16/165,86=0,182

Образуется веществ, (кг/ч):

Со2О3: (1,907-0,019) * 165,86/2*74,93=2,091

Оксида СоО в исходной шихте, (кг/ч): 47,005*0,15*0,063=0,444

Со203: 0,444*165,86/2*74,93=0,492

Суммарное количество Со2Оз, (кг/ч): 2,583

5.2.4. Окисление Zn:

Распределение компонента, (кг/ч):

огарок: 1,0*0,65=0,65

пыль циклона: 1,0*0, 20=0, 20

пыль рукавного фильтра: 1,0*0,15=0,15

Основная реакция: Zn + 0,50? = ZnO

М=65,39 М=16 М=81,39 (г/моль)

1) в огарке окислится: 0,65 кг/ч Расходуется кислорода, (кг/ч):

О2: 0,65*16/65,39=0,159 Образуется веществ, (кг/ч):

ZnO: 0,65*81,39/65,39=0,809

Оксида ZnO в исходной шихте, (кг/ч): 47,005*0,65*0,006=0,188 Суммарное количество ZnO, (кг/ч): 0,997

2) в циклоне окислится: 0,2 кг/ч Расходуется кислорода, (кг/ч):

02: 0,2*16/65,39=0,049 Образуется веществ, (кг/ч):

ZnO: 0,233

Оксида ZnO в исходной шихте, (кг/ч): 47,005*0, 20*0,006=0,056 Суммарное количество ZnO, (кг/ч): 0,289

3) в рукаве окислится: 0,15кг/ч Расходуется кислорода, (кг/ч):

02: 0,15*16/65,39=0,037 Образуется веществ, (кг/ч):

ZnO: 0,15*81,39/65,39=0,187

Оксида ZnO в исходной шихте, (кг/ч): 47,005*0,15*0,006=0,043 Суммарное количество ZnO, (кг/ч): 0,230

5.2.5. Окисление Си:

Распределение компонента, (кг/ч):

огарок: 0,5*0,65=0,325

пыль циклона: 0,5 *0, 20=0,1

пыль рукавного фильтра: 0,5*0,15=0,075

Реакции: а) 2Си + 0.5О2 = СшО

М=63,552 М=16 М=143,1 (г/моль)

По реакции (а): Расходуется кислорода, (кг/ч): О2: 0,325*16/63,552*2=0,041 Образуется веществ, (кг/ч): Си2О: 0,325*143,1/63,55*2=0,366

Оксида Си2О в исходной шихте, (кг/ч): 47,005*0,65*0,003=0,086

Из исходной шихты Си2О окисляется до СиО нацело. Из окислившегося Си2О по реакциям не будет окисляться до СиО 100% -98%=2%: 0,366*2%=0,007кг/ч Отношение распределения образования оксидов: Cu20/CuO = 2/1 0,366*0,98=0,359 кг/ч следовательно образуется: Си2О=0,244 кг/ч и 0,122 кг/ч идет на доокисление до СиО Суммарное количество Си2О, (кг/ч): 0,007+0,244=0,251

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 0,232*1/4*32/79,56=0,023

Образуется веществ, (кг/ч):

СиО: (0,122+0,086) *79,55/143,1* 1/2=0,232

2) в циклоне окислится: 0,1 кг/ч

Будем считать, что реакция идет до образования Си2О.

Расходуется кислорода, (кг/ч):

02: 0,1*16/2*63,55=0,013

Образуется веществ, (кг/ч):

Си20: =0,105

Оксида Си2О в исходной шихте, (кг/ч): 47,005*0, 20*0,003=0,028

Суммарное количество Си2О, (кг/ч): 0,133

3) в рукаве окислится: 0,075кг/ч По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 0,075*169/2*63,55=0,009 Образуется веществ, (кг/ч):

Си2О: 0,075*143,1/63,55*2=0,084

Оксида Си2О в исходной шихте, (кг/ч): 47,005*0,15*0,003=0,002

Из исходной шихты Си2О окисляется до СиО нацело. Из окислившегося Си2О по реакциям

не будет окисляться до СиО 100% -99%=2%: 0,084*1%=0,001кг/ч

Отношение распределения образования оксидов: Cu20/CuO = 2/1

0,084*0,99=0,083 кг/ч следовательно образуется:

Си2О=0,056 кг/ч и 0,028 кг/ч идет на доокисление до СиО

Суммарное количество Си2О, (кг/ч): 0,001+0,056=0,057

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 0,053*1/4*32/79,55=0,005

Образуется веществ, (кг/ч):

СиО: (0,028+0,133*0,15) *79,55=0,005

5.2.6. Окисление Ге:

Распределение компонента, (кг/ч):

огарок: 0,167*0,65=0,108

пыль циклона: 0,167*0,2=0,033

пыль рукавного фильтра: 0,167*0,15=0,025

Реакции: a) Fe + 0.50? = FeO

М=55,85 М=16 М=71,85 (г/моль)

1) в огарке окислится: 0,108 кг/ч

Отношение распределения образования оксидов: РеаОз/ FeO =3/1=0,081/0,027

По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 0,027*16/55,85=0,008

Образуется веществ, (кг/ч):

FeO: 0,027*71,85/55,85=0,035

По реакции (б):

Расходуется кислорода, (кг/ч):

02: 0,081*1,5*32/55,85*2=0,04

Образуется веществ, (кг/ч):

FeiOs: 0,081*159,7/2*55,85=0,116

Оксида FeiOs в исходной шихте, (кг/ч): 47,005*0,65*0,002=0,065

Суммарное количество Ре2Оз, (кг/ч): 0,181

2) в циклоне окислится: 0,033кг/ч

В циклоне окисление идет до РеаОз.

Расходуется кислорода, (кг/ч):

О2: 0,033*1,5*32/55,85*2=0,014

Образуется веществ, (кг/ч):

РегОз =0,065

Оксида Ре2Оз в исходной шихте, (кг/ч): 47,005*0, 20*0,002=0,019

Суммарное количество Ре2Оз, (кг/ч): 0,084

1) в огарке окислится: 0,025 кг/ч

Отношение распределения образования оксидов: РезОз/ FeO =3/1=0,019/0,006

По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 0,006*16/55,85=0,002

Образуется веществ, (кг/ч):

FeO: 0,006*71,85/55,85=0,008

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 0,019*1,5*32/55,85*2=0,008

Образуется веществ, (кг/ч):

FeiOs: 0,019*159,7/2*55,85=0,027

Оксида Ре2Оз в исходной шихте, (кг/ч): 47,005*0,15*0,002=0,013

Суммарное количество Ре2Оз, (кг/ч): 0,04

5.2.7. Теоретическое количество воздуха

Суммарное количество кислорода, (кг/ч): 35,03 + 9,939 + 11,563 + 3,55 + 2,662 + 1,765 + 0,865 + 0,543 + 0,407 + 0,182 + 0,159 + 0,049 + 0,037+0,023+0,013+0,009+0,005+0,003+ 0,008+ 0,014+0,002+0,008=75,043

Теоретический расход воздуха (из расчета. Оа - 23% по массе)

75,043*0,23=326,274 кг/ч

Количество азота: 326,274 - 75,043= 251,231 кг/ч

Количество влаги, вносимое с воздухом при Т=20°С и относительной влажности 80%

(содержание влаги "0,012 кг. на 1кг. сухого воздуха):

326,274* 0,012 = 3,915 кг/ч

Теоретический расход влажного воздуха (кг/ч)

326,274 + 3,915 = 330,189 кг/ч.

Таблица 8. Состав огарка.


Со203
11,105
6,793
WC ТЮ Со Zn Си Fe WO3 ТЮ2 СоО ZnO Си2О Fe203 H20 Бент. всего
кг/ч 1,746 0,336 0 0 0 0 124,760 12,975 0,165 0,997 0,251 0,181 0 10,686 163,469
% 1,068 0, 206 0 0 0 0 76,320 7,937 0,101 0,610 0,154 0,111 0 6,537 100,000
СиО FeO

 

0,232 0,035

 

0,142 0,021

 

Таблица 9. Состав циклонной пыли.

WC TiC Со Zn Си Fe WO3 ТЮ2 СоО ZnO Си2О Fe2O3 Н2О Бент. всего
кг/ч 2,686 0,516 0 0 0 0 35,766 7,757 2,925 0,289 0,133 0,084 0 3,288 53,444
% 5,026 0,965 0 0 0 0 66,922 14,514 5,473 0,541 0,249 0,157 0 6,152 100,000

Таблица 10. Состав пыли рукавного фильтра.

Со2ОЗ
2,583
6,587
WC TiC Со Zn Си Fe WO3 ТЮ2 СоО ZnO Си2О Fe2O3 H2O Бент. всего
кг/ч 0, 201 0,039 0 0 0 0 29,030 4,485 0,019 0,230 0,057 0,040 0 2,466 39,211
% 0,513 0,099 0 0 0 0 74,035 11,438 0,048 0,587 0,145 0,102 0 6,289 100,000
СиО FeO

 

0,053 0,008

 

0,135 0,020

 

Таблица 11. Состав газов.

N2 кг/ч 251,231 Н2О 42,275

СО2

41,414

всего 334,920
% 75,012 12,622 12,365 100,000

Таблица 12. Материальный баланс обжига.

Г Приход Об разуется
Вещество кг/ч % Вещество кг/ч %
WC 134,636 22,366 WC 4,633 0,786
TiC 25,531 4,241 TiC 0,891 0,151

Со 10,000 1,661
Zn 1,000 0,166 WO3 189,556 32,172
Си 0,500 0,083 ТЮ2 25,217 4,280
Fe 0,167 0,028 СоО 3,109 0,528
Со203 13,688 2,323
W03 35,766 5,941 ZnO 1,516 0,257
ТЮ2 7,757 1,289 Си20 0,441 0,075
СоО 2,975 0,494 СиО 0,285 0,048
ZnO 0,289 0,048 Fe203 0,305 0,052
Си2О 0,133 0,022 FeO 0,043 0,007
Fe203 0,084 0,014
бент 16,440 2,790
бент 16,440 2,731
H20 40,424 6,715 H20 40,424 6,861
N2 251,231 42,640
02 75,043 12,466 C02 41,414 7,029
N2 251,231 41,734
Всего 601,976 100 Всего 589, 193 100

Нее

пр

язка от ихода 12,783 2,124

тшо: 3,036*МШо/201,38=0,270

тшо: 0,594*МШо/165,54=0,065

тшо: 0,178*МШо/165,54=0,019 Остаток воды: 547,236-21,251=525,985 кг.

Количество NH3 пошедшее на реакции, (кг/ч):

тотв: 201,227*2*MNH3 (17) 7303,3=22,557

тшз: 0,520* 6*МШЗ /211,93=0,250

тшз: 34,980*12* Мню /211,93=33,670

ткш: 3,036* 6*МШЗ /201,38=1,537

тшз: 0,594*4* Мынз /165,54=0,240

6) тщз: ОД78* 4*МШЗ /165,54=0,078 Остаток NH3: 60,804-58,324=2,480 кг.

Таблица 13. Материальный баланс выщелачивания.

Приход Образуется
Вещество WC кг/ч 1,947 % 0,236 Вещество (NH4) 2WO4 кг/ч 201,227 % 25,084

 

TiC 0,375 0,046 [Co(NH3) 6] (OH) 3 35,500 4,425

 

WO3 153,790 18,662 [Zn (NH3) 6] (OH) 2 [Cu (NH3) 6j (OH) 2 3,036 0,774 0,378 0,096

 


Продолжение таблицы.

ТЮ2 17,460 2,119
СоО 0,184 0,022 WC 1,947 0,243
Со203 13,688 1,661 TiC 0,375 0,047
ZnO 1,227 0,149
Cu20 13,688 1,661 ТЮ2 17,460 2,177
CuO 0,285 0,035 Fe203 0,221 0,028
Fe2O3 0,221 0,027 FeO 0,043 0,005
FeO 0,043 0,005
бент 13,152 1,639
бент 13,152 1,596
NH3 60,804 7,378 NH3 2,480 0,309
H20 547,236 66,404 H20 525,985 65,568
Всего 824,100 100 Всего 802,2 100
Невязка от прихода 21,900 2,657

mCu(H20) 4ci2: (0,594+0,178) Mcu(mo) 4 012 206,44/165,54 = 0,963

mcocn: 7,756 M 7,756 Mc0ci2129,83/165,25= 6,093

Количество МНЦ С1, (кг/ч):

(165,765*2*53,5/249,85) +(7,756*6*53,5/165,28) +(3,683*6*53,5/244,28) +(0,963* 4*53,5/

206,44) =91,891

Количество поглощаемой реакциями H2O, (кг/ч):

(3,683*4*18/244,28) +(0,963*2*18/206,44) +(6,093*0,5*18/129,83) =1,676

Количество образующейся Н2О, (кг/ч):

7,756*3*18/165,765=2,527

Количество Н2О, приходящее с кислотой, (кг/ч):

Состав кислоты 19,8% НС1 80,2% Н2О

Количество требуемого НС1, (кг/ч):

(165,765*2*36,45/249,85) + (7,756 * 9 * 36,45 / 165,28)  + (3,683 * 8 * 36,45/244,28) +(0,963*6*36,45/206,44) =69,177

Приходящей с кислотой Н2О, (кг/ч):

69,177*0,802/0, 198= 280, 202

Суммарное количество приходящей Н2О, (кг/ч):

280, 202+525,985=806,187

Суммарное количество уходящей Н2О, (кг/ч):

806,187+2,527-1,676=807,03 8

Таблица 14. Материальный баланс осаждения.

Приход Образуется

 

Вещество кг/ч % Вещество кг/ч %

 

(NH4) 2 WO4 201,227 18,033 H2W04 165,765 15,414

 

[Co(NH3) 6] (OH) 3 35,500 3,181 Zn(H2O) 6Cl2 3,683 0,342

 

[Zn (NH3) 6] (OH) 2 3,036 0,272 Си(Н2О) 4С12 0,963 0,090

 

[Си (NH3) 6] (OH) 2 0,774 0,069 СоС12 6,093 0,567

 

NH4C1 91,891 8,545

 

НС1 69,177 6, 199

 

Н2О 806,187 72,245 Н20 807,038 75,043

 

Всего 1115,901 100 Всего 1075,433 100

 

Невя: ка от прихода 40,468 3,626

 

5.5. Блок 5. Прокалка и сушка

WOs получают термическим разложением H2WC4 при 750-800 °С

При прокалке идет следующая реакция:

H2WO4^WO3+H2O

Количество продуктов, (кг/ч):

Масса WO3 =153,79 (кг/ч)

Масса Н2О = 165,765-153,76= 11,075 (кг/ч)

Вывод: полученная нарастающая с каждой стадией невязка до 3,626% вызвана погрешностью расчетов.


6. Тепловой баланс

6.1 Зона кипящего слоя

6.1.1. Приход тепла зоны кипящего слоя

6.1.1.1. Физическое тепло при Т= 20°С.

Теплоемкость шихты:

WC

Ср=12,27+2,06*10'3283 - 2,68 *105 * 1/283 =9,51 Дж/моль*град

С = 9,51 * 1000/195,86= 84,12 Дж/кг*град

WO3

Ср=17,58 + 6,79 * 10 - 3*283=19,5 Дж/моль * град

С =19,5 *1000/231,82= 84,12 Дж/(кг * град)

TiC

Ср = 13,29 - 1,94*10" 3*283-4,21*10 *1/2832 = 7,47 Дж/моль*град

С = 7,47 *1000/59,84 = 124,8 Дж/кг*град

TiO2

Ср=17,97+0,28*10"3 * 283 - 4,35 * 105 /2832 = 12,54 Дж/моль*град

С = 12,54* 1000/79,88 = 156,98 Дж/кг*град

Со

Ср=3,3+5,86 * 10"3 *283= 4,95 Дж/моль*град

С =4,96 * 1000/58,93=84,17 Дж/кг*град

СоО

Ср= 11,5 + 2,04* 10'3 * 283+0,4 * 105/2832 = 12,62 Дж/моль*град

С = 12,62 * 1000/74,93=168,42 Дж/кг*град

Со203

Ср= 19,3+8,1*10"3 *283-2,4*105/2832 =18,59 Дж/моль*град

0=18,59*1000/165,86=112,08 Дж/кг*град

Zn

Ср=5,43 + 2,4 * 10"3 *283=6,11 Дж/моль*град

С=6,11*1000/65,39=93,44 Дж/кг*град

ZnO

Ср= 11,71 + 1,22 * 10"3 *283-2,18 * 105/2832 =9,33 Дж/моль*град

0= 9,33 * 1000/81,39 = 114,63 Дж/кг*град

Си

Ср=5,41 + 1,5 10"3 *283 = 5,83 Дж/моль*град С= 5,83*1000/63,55=91,74 Дж/кг*град

Си2О

Ср= 14,9 + 5,7 *10"3 *283 = 16,51 Дж/моль*град

С = 16,51 * 1000/143,1 = 115,37 Дж/кг*град

CuO

Ср = 9,27 + 4,80* 10"3 *283= 10,628 Дж/моль*град

С = 10,628 * 1000/79,55 = 133,606 Дж/кг*град

Fe

Ср = 9,0 Дж/моль*град

С = 9,0* 1000/55,85=161,14 Дж/кг*град

FeO

Ср = 12,38 +1,62*10"3 *283-0,38*105*1/2832=12,364 Дж/моль*град

С =12,364*1000/71,85=172,081 Дж/кг*град

Fe203

Ср = 31+1,76*10"3 *283=31,5 Дж/моль*град

С = 31,5*1000/159,7=197,24 Дж/кг*град

Бентонит (Al2O3*4SiO2*2H2O)

Ср=(109,3+4*46,9+2*46,9) +(18,4+434,3+2*30,0) * 10"3 *283 - (30,4+17,9+27,3) * 105*1/2832 = 357,3 Дж/моль*град С = 945,5 Дж/кг*град

бентонит (A12O3*4SiO2*2H2O) рассчитываем, как сумму теплоемкостей составляющих оксидов:

АСр(109,3+4*46,9+2+46,9) +(18,4+4*34,3+2*30) *10'3*Т-(30,4+17,9+27,3) *105/Т2= 390,7* 10-**283-75,6*105/2832=357,3=945,5Дж/кг*град

Н2О

Теплоемкостыгринимаем равной 4184 Дж/кг*град

Средняя аддитивная теплоемкость шихты, (Дж/кг*град):

С=(48,55*0,49202+84,12*0,13071+124,8*0,09330+156,98*0,02835+84,17*0,03654+168,42*

0,01087+93,44*0,00365+114,63 *0,00106+91,74*0,00183+115,37*0,00049+161,14*0,00061+

197,24*0,00031+945,5*0,06008+4184*ОД4019): 100=700,04Дж/кг*град

Физическое тепло шихты при 20°С Ккал/ч:

700,04*273,638*20*10"3 =3831,15

6.1.1.2. Физическое тепло воздуха

Исходим из содержания в воздухе кислорода азота и паров воды. Для 100°С

теплосодержания равны, (кДж/нм3): 131,7; 129,5 и 150,5 В пересчете на 1 кг и Т=20°С,

кДж/кг.:

Кислород: 131,7*(20/100) *(22,4/32) =18,4

Азот: 129,5*(20/100) * (22,4/28) = 20,7

Пары воды: 150,5*(20/100) *(22,4/18>= 37,5 Физическое тепло воздуха, кДж/ч:

18,4*75,043+20,7*251,231+37,5*3,915=6728,085 Теплосодержание воздуха при 20°С ккал/кг: 6728,085/330,189=20,376

6.1.1.3. Тепло реакции окисления:

реакция 1: Окисление WC

ЛН1173=-1190,5 кДж/моль

Теплота окисления 1 кг WC

Q wc= 1190,5 *134,636*1000/195,86=818360,860 кДж/кг

реакция2: Окисление TiC

ДНц7з=-1018,5 кДж/моль

Теплота окисления 1 кг TiC

Q Tlc = 1018,5*25,531*1000/59,84=434547,526 кДж/кг

реакция 8: Окисление Со

ДН117з=-248,55 кДж/моль

Теплота окисления 1 кг Со

Q со = 248,55 *10,0*1000/58,93=42177,16 кДж/кг

реакция 4: Окисление Zn

ДН1Ш=-345,782 кДж/моль

Теплота окисления 1 кг Zn

Q zn = 345,782 * 1,0* 1000/65,39=5287,995 кДж/кг

реакция 11: Окисление Си

АНц7з=-162,7 кДж/моль

Теплота окисления 1 кг Си

Q Си= 162,7 *0,5* 1000/63,55=1280,094 кДж/кг

реакция 14: Окисление Fe

АНП73=-821,787 кДж/моль

Теплота окисления 1 кг Fe

QFe= 821,787 *0,167* 1000/55,85=2457,268 кДж/кг

реакция 12: Доокисление Си2О до СиО

ДН1173=-73,2 кДж/моль

Q сио= 73,2*1000*0,133/79,55=122,383 кДж/кг

реакция 9: Доокисление СоО до Со20з

ДНП73=-101,455 кДж/моль

Qco2o3= 101,455*1000*0,2,975/165,86=1819,779 кДж/кг

6.1.1.4Суммарный приход тепла.

Q = 3831,15+6728,085+818360,860+434547,526+42177,16+5287,995+1280,094+2457,268+ 122,383+1819,779= 1316612,300 кДж/ч


6.1.2. Расход тепла.

6.1.2.1. Тепло уносимое огарком.

Средняя теплоемкость огарка, (Дж/кг*град):

О (48,55*0,01068+124,8*0,00206+84,12*0,7632+156,98*0,07937+168,42*0,00101+112,08*

0,06793+114,63*0,0061+115,37*0,00154+133,606*0,00142+197,24*0,00111+172,081*0,00021+

945,5*0,06537) /1=148,348

Тепло уносимое огарком при 900°С, (кДж/ч): 148,348*10-3*900*163,469=21825,269

6.1.2.2. Тепло уносимое пылью.

Средняя теплоемкость пыли, (Дж/кг*град):

C=((48,55*0,05026+84,12*0,66922+124,8*0,00965+156,98*0,14514) /l) +((48,55*0,00513+ 84,12*0,74035+124,8*0,00099+156,98*0,11438+168,42*0,00048+18,59*0,06587+114,63* 0,00587+115,37*0,00145+133,606*0,00135+197,24*0,00102+172,081*0,0002+945,5*0,06289) /!) =239,954

Тепло уносимое огарком при 900°С, (кДж/ч): 239,954*10'3 *900*92,655=20009,644

6.1.2.3. Тепло уносимое газами.

Теплосодержания компонентов газов при600°С равны, (кДж/нм3):

азот - 803,6 углекислый газ - 1228,8 вода - 968,0

Теплосодержания компонентов газов в пересчете на 900°С равны, (кДж/кг):

азот: 803,6*900*22,4/600*28=964,32

углекислый газ: 1228,8*900*22,4/600*44,01=938,143

вода: 968,0900*22,4/600*18= 1806,93

Тепло уносимое газами при 900°С, (кДж/ч): 964,32*251,231+938,143*41,414+1806,93*42,275=357507,298

6.1.2.4. Затраты тепла на испарение воды в шихте.

Для нагрева воды от 20°С до 100°С затрачивается 2591,6 кДж.

Теплосодержания водяного пара при 100°С равно 150,5 кДж/нм3

150,5*22,4/18=187,2 кДж/ч

Тогда дополнительные затраты тепла на испарение воды составляют, (кДж/кг):

2591,6-187,2=2404,4

Дополнительные затраты тепла на испарение воды составляют, (кДж/ч):

2404,4*38,36=92232,784

6.1.2.5. Потери тепла через стены.

Условно принимаем, что потери тепла через стены составляет 3% от прихода тепла, (кДж/ч): 1316612,300*0,03=39498,369

6.1.2.6. Суммарные потери тепла.

Q = 21825,269+20009,644+357507,298+92232,784+39498,369=531073,364 кДж/ч

6.1.2.7Избыток тепла при теоретическом расходе воздуха

Q = 1316612,300-531073,364=785538,936 кДж/ч

6.1.3. Определение требуемого избытка воздуха

6.1.3.1. Теплосодержание воздуха при 900°С.

Количество влаги 0,012кг. на 1кг. сухого воздуха (Oi-23%, N2-77%), следовательно 1кг. влажного воздуха будет содержать: кислорода: 0,23*1/1,012=0,227 азота: 0,77*1/1,012=0,761 водяного пара: 0,012*1/1,012=0,012

Теплосодержание кислорода при 600°С составляет 849,9 кДж/нм3, в пересчете на 900°С: 849,9*900*22,4/600*32=892,395 кДж/кг Теплосодержание воздуха при 900°С, (кДж/кг):

0,027*892,395+0,761 *964,32+0,012* 1806,93=779,625

Количество тепла, расходуемого на нагревание 1кг. воздуха от 20°С до 900°С, кДж: 779,625-20,376=759,249

6.1.3.2. Необходимый избыток воздуха.

785538,936/759,249=1034,626 кг/ч

6.1.3.3. Суммарный расход воздуха.

330,189+1034,626=1364,815 кг/ч Коэффициент избытка воздуха: 1364,815/330,189=4,13

6.1.4. Определение размеров сечения печи

При обжиге в кипящем слое гранул крупностью до 2мм., оптимальный расход составляет 750 нм3/ч*м2 Оптимальный расход воздуха, выраженный в кг/ ч*м2 определим, приняв среднюю молекулярную массу воздуха равной 29 г/моль:

750*29/22,4=970,982

Площадь пода печи, м2: S=1364,815/970,982=1,4 примем 1,5

Для определения размеров сечения принимаем, что шахта имеет вид окружности с радиусом:

S=rcR2, отсюда R2=S/n =1,5/3,14=0,477 следовательно R= V0,477= 0,69м. В соответствии с этим расстояние между точками загрузки и выгрузки равна: В=2К=1,38м.

6.2. Надслоевая зона

6.2.1. Приход тепла

6.2.1.1. Физическое тепло пыли и газов.

20009,644+357507,298+785538,936=1163055,878 кДж/ч

6.2.1.2. Тепло окисления.

Первичной пыли в циклонной пыли 1/3 от всей, степень окисления 47% на выходе из кипящего слоя, отсюда доля не окисленных реагентов 53%. В рукавном фильтре остается 1% компонентов пыли.

WC в первичной пыли, (кг/ч):

циклон: 24,234*0,53*1/3=4,281

рукав: 19,993*0,01=0, 199

Суммарное количество пыли окисляемое в надслоевой зоне, (кг/ч): 4,48

TiC в первичной пыли, (кг/ч):

циклон: 3,319*0,53*1/3=0,586

рукав: 2,489*0,01=0,025

Суммарное количество пыли окисляемое в надслоевой зоне, (кг/ч): 0,611

Тепло выделяемое при окислении в надслоевой зоне:

WC

АН! 173=-1190,5 кДж/моль

Q=l 190,5* 1000/195,86=6078,32 кДж/ч

TiC

ДНц7з=-1018,5 кДж/моль

д=1018,5*1000/59,84=17020,388кДж/ч

Суммарное количество тепла,(кДж/ч):

Q=27051,942+10399.457=37451,399

6.2.1.3. Приход тепла в надслоевой зоне.

1163055,878+37451,399=1200507,277 кДж/ч

6.2.2. Расход тепла

Так как количества окисляющихся компонентов в надслоевой зоне незначительны, примем, что количество тепла уносимое пылью и газами из слоя и из печи одинаковы и равны И63055,878 кДж/ч.

6.2.2.1. Потери тепла через стены и свод.

Примем, что потери тепла через стены и свод равны 3% от прихода тепла в надслоевую зону: 1200507,277*0,03=36015,218 кДж/ч

6.2.2.2. Суммарный расход тепла.

1163055,878+36015,218=1199071,096 кДж/ч

6.2.3. Разность между приходом и расходом тепла при 900°С

1200507,277-1199071,096=1436,181 кДж/ч

Вывод: Невязка - 0,12% от прихода тепла, следовательно температура отходящих газов определена с достаточной точностью.


7. Печь кипящего слоя

Как показали расчеты площадь пода равна 1,5м2. Для расчета печи с такой площадью пода нужна спец литература. Целью данной работы не является данный расчет, и рисунок 1., представленный ниже, является приблизительной копией нужной печи кипящего слоя. Рисунок 1. Печь кипящего слоя [4].






8. Уточнение аппаратурного оформления

8.1. Щековая дробилка [14]

Основной проблемой схемы переработки является измельчение сырья. Рисунок 2. Щековая дробилка

Достижимая конечная крупность зависит от выбранной ширины щели и составляет: dso= 15 мм (наибольшая ширина щели) dso = 1 мм (наименьшая ширина щели).

Принцип действия:

Лабораторная проба измельчается в закрытом рабочем пространстве воздействием большого давления между двумя дробящими плитами. Между двумя боковыми опорными стенками находится неподвижная дробящая плита. Второй дробящей плитой, которая приводится в движение эксцентриком, проба втягивается и прижимается к неподвижной дробящей плите. Вследствие очень большого давления между обеими плитами куски пробы раздрабливаются. Раздробленный материал выступает внизу через регулируемую снаружи разгрузочную щель. При непрерывной работе материал может, например, через желоб подводиться для дальнейшего измельчения в лабораторной дисковой мельнице.

Принадлежности:

Дробящие плиты и опорные стенки - предлагаются в различных материалах во избежание нежелательного загрязнения тюб при износе измельчительных элементов.

Материал Плотность г/см3 Износостойкость Применение для следующих материалов
Твёрдый сплав карбида вольфрама 91% WC + 9%Со 14,8 очень хорошая твёрдая, абразивная проба
Двуокись циркония 94,8%Zr02 5,7 чрезвычайно хорошая абразивная проба, проба средней твёрдости, безжелезное измельчение

Обычно дробящие плиты и опорные стенки изготавливаются из одинакового материала, однако, если боковые стенки не подвергаются большой нагрузке, то можно использовать стандартное исполнение их из закалённой инструментальной стали. Тонкое измельчение в диапазоне от 95 мм до 0,1 мм - монтажная станина с питающим желобом в комбинации с лабогатошой дисковой мельницей.

Технические данные Модель П
Размер отверстия воронки 100 х 100 мм
Крупность загружаемого материала ок.95 мм
Производительность 200 кг/час
Ширина щели (тонкость) 1-15 мм
Мощность двигателя 2,2 кВт
Вес нетто 205 кг брутто 245 кг
Стандартное исполнение Дробящие плиты и боковые стенки из закалённой хромистой стали
Размеры (ширина х глубина х высота) 41x83x72 см

8.2. Дисковая мельница [14]

Область применения.

Прибор применяется для прерывного или непрерывного тонкого измельчения хрупких и очень твёрдых проб. Максимальная крупность загружаемых кусков составляет ок.20 мм длины ребра. Достижимая конечная тонкость (d50) находится в зависимости от установленной ширины  щели в диапазоне от ок.12 мм (наибольшая ширина щели):

·     до 0,1 мм (наименьшая ширина щели). Максимальная производительность зависит от

·     выбранной ширины щели и твёрдости пробы и составляет ок.150 кг/час.

Принцип действия.

Материал измельчается между двумя встречнодействующими, с внутренней стороны грубо.

Технические данные

Макс, крупность Загружаемого материала 20 мм Производительность 150 кг/час Конечная тонкость 0,1 - 12мм Питание 400 В/3~, 50 - 60 Гц, 1830Вт Скорость вращения измельчающего диска 439 об/мин Вес нетто 140 кг, брутто 170 кг Размеры (ширина х глубина х высота) 44 х 87 х 40 см Упаковка картонный ящик! 08 х 60 х 70 см

8.3. Гранулятор [14]

Гранулятор барабанный Модель ГБ-1600 обеспечивает получение полуфабриката 0-20 мм. Он может быть использован для интенсивного перемешивания влажных и сухих тонкодисперсных компонентов, производительность, м3/час - не менее 10,0, диаметр барабана - 1600 мм, частота вращения барабана - 18 об/мин, режим работы - непрерывный, электродвигатель 4А13288УЗ N=4 квт, п=750 об/мин (привод барабана)

8.4. Печь кипящего слоя

См. п. п.4.1.2.3; 7. Температура обжига 900°С Непрерывная загрузка и отгрузка сырья

8.4.1. Циклон [9]

Модель: НО7215А

Коэффициент очистки: 0,99

Количество очищаемого воздуха: до6550 м2


7.4.2. Рукавный фильтр [8]

Достигаемая эффективность очистки газов от взвешенных частиц (пыли, золы и т. л) 20 мг/мЗ (до 99,9%) и в случае применения повторного цикла можно достичь даже ниже 1 мг/мЗ. Регенерация фильтров производиться импульсом сжатого воздуха либо низконапорной обратной продувкой воздухом.

По типу применяемых рукавов имеются фильтры рукавные, карманные и др. В случае применения керамических рукавов можно эксплуатировать фильтр до 850 °С

Марка: ФРИ-360

Площадь поверхности фильтрования: 360 м2

Диаметр рукава: 135 мм.

7.5. Реактор для выщелачивания (с распыляющимся с верху реагентом)

Выбран стандартный реакционный аппарат с перемешивающим устройством. Объем 200л., материал корпуса - сталь.

Расчет количества оборудования производится по формуле

V= Q *T/(r*V*y)

Где Q - суточная производительность на операции 18128 кг/сут

т - длительность цикла операции 20мин.

V - рабочая емкость аппарата 150л

г - число часов работы аппарата в сутки 22

у - коэффициент заполнения, обычно принимают 0,7-0,85

п=18128*20/(0,75*200*22*60) =1,8=2шт

7.6. НУТЧ фильтр [7]

Рисунок 4. НУТЧ фильтр.

Нутч-фильтр предназначен для обезвоживания осадка (шлама) из отстойников и дифференциаторов под действием вакуума. Количество аппаратов принимается в зависимости от количества шлама поступающего на обезвоживание.

Марка: НФ-1000-01.

Выпускаются производительностью 100 кг/ч по осадку

Допустимая температура стенки, С:

в кислой среде - от минус 20 до плюс 200

8.7. Колонна осаждения

Выбран стандартный реакционный аппарат с перемешивающим устройством. Объем 300л., материал корпуса - сталь.

V - Q *i/(r*V*y)

Где Q - суточная производительность на операции 24530 кг/сут

т - длительность цикла операции 35 мин

V - рабочая емкость аппарата 100л

г - число часов работы аппарата в сутки 22

у - коэффициент заполнения, обычно принимают 0,7-0,85

п=24530*25/(0,75*300*22*60) =2шт.

7.8НУТЧ фильтр.

См. п. п.7.6

8.9.Сушильные аппараты с вращающимися барабанами [7]

Сушилка представляет собой цилиндрический корпус, установленный на роликовых опорах с наклоном в сторону выгрузки материала.

Выбираем не большую печь, с производительностью не менее 200кг/ч/ При температуре ~750°С.

Марка БНО,5-2,5НУ

Частота вращения барабана: 4,6 об/мин

Масса, кг, не более 2000кг.

8.10. Индукционная печь [10]

Модель: камерные лабораторные печи производимые НПК "ЛенТерм"

Тип печ: КЭСл-2,5Ь

Тмах, 900°С

Тип нагревателей: мет. спирали.


9. Вывод

В процессе производственной деятельности образуются отходы, которые нарушают экологическое равновесие, загрязняя окружающую среду, и снижают степень извлечения ценных компонентов, содержащихся в исходном сырье. Эти отходы необходимо перерабатывать.

В настоящее время подсчеты показали, что удельные капитальные затраты на сбор и переработку вторичного металла в 25 раз меньше, чем на производство металла из руды.

Производительность труда во вторичной цветной металлургии примерно в два раза выше, чем в первичной. Сбор и переработка вторичных металлов имеют не только экономический, но и социальный эффект.

Отходы подразделяют на отходы производства и отходы потребления (лом).

В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью. Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали.

Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве. И, следовательно, возникает вопрос утилизации таких сплавов. Переработка лома и отходов позволяет вернуть металл в кругооборот.

5. Сплавы редких металлов перерабатывают окислением, хлорированием, электролизом и гидрометаллургическим способом. Их переработка осложнена более высоким содержанием других металлов и взаимным влиянием компонентов сплавов на технологические процессы. - Окислительные методы.

Их можно использовать и для переработки сплавов и кусковых отходов твердых сплавов. Применяемые в настоящее время инструментальные твердые сплавы базируются на карбидах вольфрама, титана и тантала или на смеси указанных соединений с добавлением связующего металла - кобальта. - Методы хлорирования.

При хороших технологических показателях следует отметить громоздкость оборудования для хлорных схем, а также трудности, связанные с агрессивностью и токсичностью хлора и хлоридов, необходимостью специальных коррозионностойких материалов для аппаратуры и значительными затратами на реагенты - Способы электрохимического растворения отходов.

Электрохимическое растворение отходов сплавов используют на отечественных и зарубежных предприятиях. Этот метод наиболее дешев и не требует сложной аппаратуры. Электрохимическое растворение целесообразно вести в щелочных растворах, так как образуются легко растворимые соли рения, вольфрама и молибдена.

6. Как показали расчеты:

- невязка материального баланса обжига 2,124%, она связана с погрешностью расчетов, - невязка теплового баланса 0,12% рассчитана с удовлетворительной точностью, - площадь пода равна 1,5м2, для расчета печи с такой площадью пода нужна спец литература, целью данной работы не является данный расчет.


9. Список литературы

1.      Корвин С.С, Дробот Д.В., Федоров П.И. "Редкие и рассеянные элементы. Химия и технология". В трех книгах. Книга 2. учебник для вузов - М.: МИСИС, 1999. - 464с.

2.      Корвин С.С, Дробот Д.В., Федоров П.И. "Редкие и рассеянные элементы. Химия и технология". В трех книгах. Книга 3. учебник для вузов - М.: МИСИС, 1999. - 464с.

3.      Дробот Д.В., Резник А.М., Юрченко Л.Д. "Оборудование заводов редкометалльной промышленности и основы проектирования": Учебное пособие. - М МИХМ, 1985 -  72с.

4.      Морозов В.А., Миткалийный В.И., Егоров А.В., Сборщиков Г.С. "Металлургические печи атлас". - М.: Металлургия. 1987. -384с.

5.      Краткий справочник физико-химических величин/ Под ред. Мищенко К.П., Равделя А.А.

6.      http: // www. mechanik. spb. ru

7.      http: // www. upmt. ru

8.      http: // www. fingo. ru/fri-360/

9.      http: // stankinprom. com. ua/products/images/PDF/rci. pdf

10.    10. http: // wwwЛenterm. n] /lenterm_laboratory_fumaces. html И. http: // www. bank. referatoff. ru

11.    http: // www. chemport. ru

12.    http: // www. drillmat. ru

13.    http: // www. npftin. spb. ru


Страницы: 1, 2


© 2010 Рефераты