Рефераты

Дипломная работа: Синтез пиррольных интермедиатов для высокосопряженных порфиринов

В четырехгорлую колбу объемом 500 мл, снабженную механической мешалкой, термометром, воронкой для сыпучих веществ и обратным холодильником, помещают 110 мл уксусной кислоты и нагревают до 850 и добавляют 29,4 г ацетата натрия до растворения. Затем последовательно при­бавляют 26,9 г (0,22 моль) натриевой соли 2–метил–3–оксобутилаля, 35,5 мл (0,19 моль) изонитрозомалонового эфира (42) и смесь 45 мл CH3COOH и 20 мл H2O и нагревают до 950. К полученному раствору добавляют порциями 41,3 г (0,64 моль) цинковой пыли так, чтобы температура не превышала 1050. Затем реакционную массу перемешивают 0,5 часа при той же температуре и выливают в 0,5 л холодной воды. Экстрагируют хлороформом. Вытяжку сушат MgSO4. Хлороформ отгоняют, а остаток перекристаллизовывают из изопропанола. Получают 2,9 г (10%) 3,4–диметил–2–карбоэтоксипиррола.

Rf = 0,6 (Г:ЭА 3:2); ТПЛ = 90–920; ПМР d (м.д.): 1.33–тр. (3H; CH2CH3, J=7.1 Гц); 1.99‑с. (3H; CH3); 2.25–c. (3H; CH3); 4.26–кв. (2H; CH2, J=6.8 Гц); 6.63–д. (1H; CH, J=2.98 Гц); 8.75‑c. (1H; NH); 13С‑ЯМР d (м.д.): 9.78 (4‑CH3); 10.23 (3‑CH3); 14.53 (OCH2CH3); 59.77 (О‑CH2); 119.42 (С-5); 120.41 (С-3, С‑4); 126.62 (С-2); 162.02 (С=О). ИК (вазелиновое масло) n (cм‑1): 3320, 2920, 1656, 1456.

Лит.: ТПЛ = 90–920 [9]; ПМР (CDCl3) d (м.д.): 1.33–тр. (3H; CH2CH3, J=7.2 Гц); 1.99–с. (3H; CH3); 2.25–с. (3H; CH3); 4.28–кв. (2H; CH2, J=6.9 Гц); 6.63–д. (1H; CH, J=2.7 Гц); 8.69‑с. (1H; NH). [9] 13С‑ЯМР (CDCl3) d (м.д.): 9.84–кв; 10.19–кв; 14.51–кв; 59.73–т; 119.30–c; 120.02–c; 120.51–c; 126.54–д; 161.72–c. [9] ИК (нуйол) n (см–1): 3322, 2924, 1731, 1718, 1693, 1671, 1661, 1462. [9]

3,4-диметил-2-карбоксипиррол.

В колбе с обратным холодильником растворяют 2,87 г (0,017 моль) 3,4–диметил–2–карбоэтоксипиррола в 20 мл метанола и прибавляют 10 мл 10% раствора NaOH. Реакционную массу кипятят 3 часа, затем разбавляют водой, охлаждают до комнатной температуры и при­капывают концентрированную HCl до рН=6-7. Выпавший желтый осадок отфильтровывают и сушат на воздухе. Получают 2,3 г (96%) 3,4–диметил–2–карбоксипиррола.

Rf = 0,9 (Г:ЭА 1:1); ТПЛ =2000(разл.); ПМР (CDCl3) d (м.д.): 1.98–с. (3H; CH3); 2.24–c. (3H; CH3); 6.63–д. (1H; CH, J=2.6 Гц); 8.63‑c. (1H; NH). ИК (вазелиновое масло) n (см–1): 3300, 1661.

Лит.: ТПЛ = 2050(разл.) [9]; ПМР (ацетон-d6) d (м.д.): 1.93–с. (3H; CH3); 2.20–с. (3H; CH3); 6.71–д. (1H; CH, J=3.0 Гц); 9.30‑уш.с. (1H; NH); 10.23-с. (1Н; COOH). [9] 13С‑ЯМР (аце­тон‑d6) d (м.д.): 9.04–кв; 9.43–кв; 118.90–c; 119.44–c; 120.65–c; 125.89–д; 161.85–c. [9] ИК (KBr) n (см–1): 3359, 3200-2350, 1648. [9]

1-Бром-2-пропанон (53).

В трехгорлую колбу на 1 литр с обратным холодильником, термометром и капельной воронкой помещают 190 мл воды, 58,6 мл (0,8 моль) ацетона и 44 мл (0,76 моль) уксусной кислоты. При температуре 700 прибавляют по каплям 41 мл (0,8 моль) Br2 до исчезновения окраски, затем раствор перемешивают при той же температуре 0,5 часа и добавляют 100 мл холодной воды. Нейтрализуют твердой содой до pH=6-7 и отделяют органический слой, ко­торый сушат над безводным сульфатом магния. Перегоняют в вакууме. Получают 26,3 мл (40%) 1-бром2-пропанона (53).

nD25=1.4670 Ткип=44–490/25–30 мм.

Лит.: nD20=1.4697 Ткип=136,50 [95].

Ацетонилацетоуксусный эфир (54).

1 метод.

В трехгорлой колбе с мешалкой, обратным холодильником и термометром смешивают 200 мл ДМФА, 5,6 г (0,1 моль) мелко измельченного гидроксида калия и 1 каплю катализатора межфазного переноса (аликвотная смесь трикаприлметиламмоний хлорида и триоктилметиламмоний хлорида). При интенсивном перемешивании при комнатной температуре прибавляют по каплям смесь 13 г (0,1 моль) ацетоуксусного эфира и 13,7 г (0,1 моль) 1-бром-2-пропанона (53) с такой скоростью, чтобы температура не превышала 350, после чего смесь перемешивают 1,5 часа при 450. Реакционную массу нейтрализуют 0,5-1,0% раствором HCl до pH=6-7, экстрагируют продукт диэтиловым эфиром. Экстракт сушат MgSO4, эфир отгоняют на роторном испарителе, а остаток перегоняют в вакууме. Получают 3,8 г (20,4%) ацетонилацетоуксусного эфира (54).

nD26,5=1.4370 Ткип=128–1300/20 мм.

Лит.: nD20=1.4375 Ткип=145-1460/ 21 мм. [74], nD20=1.4398 Ткип=87-900/ 0,1 мм. [84].

2 метод.

В трехгорлую колбу на 500 мл с мешалкой, обратным холодильником и термометром помещают 105 мл абсолютного этанола и прибавляют небольшими порциями 6,3 г (0,27 моль) натрия до растворения и образования этилата натрия, затем при комнатной температуре добавляют по каплям 38,4 мл (0,3 моль) ацетоуксусного эфира. Реакционную массу охлаждают до 200 и прикапывают 23 мл (0,27 моль) бромацетона (53), таким образом, чтобы темпе­ратура не превышала 400, затем температуру повышают до 600 и перемешивают раствор 1 час. Реакционную массу охлаждают до 200, этанол отгоняют на роторном испарителе, в остаток добавляют небольшое количество воды для растворения NaBr. Отделяют нижний слой и экстрагируют из него диэтиловым эфиром. Экстракт сушат с MgSO4. Растворитель отгоняют на роторном испарителе, остаток перегоняют в вакууме. Получают 27 мл (53%) ацетонилацетоуксусного эфира (54).

nD19=1.4382 Ткип=128–1340/20–25 мм.

Лит.: nD20=1.4375 Ткип=145-1460/ 21 мм. [74], nD20=1.4398 Ткип=87-900/ 0,1 мм. [84].

2,5-гександион (55).

Смесь 29,3 г (0,16 моль) ацетонилацетоуксусного эфира (54) и 300 мл 20% раствора K2CO3 в воде кипятят в колбе с обратным холодильником 1 час. Затем раствор охлаждают до комнатной температуры и высаливают K2CO3 до расслаивания. Реакционную массу выливают в делительную воронку и экстрагируют диэтиловым эфиром. Экстракт сушат K2CO3, эфир отгоняют, а остаток перегоняют в вакууме. Получают 11,7 г (65%) 2,5-гександиона (55).

nD22,5=1.4245 Ткип=130–1340/130 мм.

Лит.: nD20=1.4260 Ткип=1910 [96].

2,5-диметилпиррол (56).

В колбе с мешалкой смешивают 6,9 г (0,09 моль)ацетата аммония, 13,4 мл (0,234 моль) уксусной кислоты и 3,4 мл (0,034 моль) уксусного ангидрида при комнатной температуре. К полученному раствору приливают 3 мл (0,026 моль) 2,5-гександиона (55) и перемешивают 30 минут. Реакционную массу нейтрализуют 30% раствором аммиака до рН=7-8 и оставляют на сутки для разложения уксусного ангидрида. Продукт экстрагируют диэтиловым эфиром, экстракт сушат над MgSO4. Эфир отгоняют, а остаток перегоняют в вакууме. Получают 1,4 г (57%) 2,5-диметилпиррола (56).

nD26=1.4780 Ткип=800/20 мм.

Лит.: nD20=1.5066 Ткип=108,30/100 мм.[97].

Нитрование 2,5-диметилпиррола (56).

В трехгорлой колбе с мешалкой, термометром и капельной воронкой охлаждают раствор 1,21 г (0,013 моль) 2,5-диметилпиррола (56) в 7,3 мл уксусного ангидрида до –550. Затем при интенсивном перемешивании прибавляют по каплям смесь 6,1 мл (0,06 моль) уксусного ангидрида и 0,64 мл (0,014 моль) 91,6% HNO3, следя за тем, чтобы температура не превышала –500. Смесь перемешивают 1,5 часа при температуре –550. Затем раствор доводят до 200 и выливают в ледяную воду, нейтрализуют твердой содой. Экстрагируют смесью диэтилового эфира и хлороформа (1:1), экстракт сушат MgSO4. Растворители отгоняют, в остаток добавляют небольшое количество диэтилового эфира, выпавший осадок отфильтровывают. Разделение жидкой фазы проводят с помощью колоночной хроматографии на силикагеле системой элюэнтов с изменяющейся полярностью: этилацетат: петролейный эфир от 1:30 до 1:10. Получают 1,88 г продукта со следующими характеристиками: Rf = 0,2 (Г:ЭА 1:1); ПМР (CDCl3) d (м.д.): 2.16–с. (3H); 2.67–c. (2H). 13С‑ЯМР (CDCl3) d (м.д.): 29, 37, 207. ИК (в тонком слое вещества) n (см–1): 3475, 3320, 2920, 1714, 1677, 1620.

2,5-диметил-3-карбоэтоксипиррол (63).

В колбе на 250 мл с механической мешалкой смешивают 29 мл (0,17 моль) ацетонилацетоуксусного эфира (54), 38,2 г (0,5 моль) ацетата аммония, 86 мл уксусной кислоты и 22 мл уксусного ангидрида и перемешивают 20 минут. Смесь выливают в 100 мл холодной воды, осадок отфильтровывают. Перекристаллизовывают из изопропанола. Получают 20.3 г (76%) 2,5-диметил-3-карбоэтоксипиррола (63).

Rf = 0,9 (Г:ЭА 1:3); ТПЛ =1130; ПМР d (м.д.):1.30-тр. (3H; -CH2CH3; J=7.24 Гц) 2.17–с. (3H; CH3); 2.45–c. (3H; CH3); 4.23–кв. (2H; CH2; J=7.24 ГцРРHHsss); 6.17–д. (1H; CH, J=2.14 Гц); 8.09‑уш.c. (1H; NH).

Лит.: ТПЛ = 1130 [79]; ПМР (CDCl3) d (м.д.): 1.33–т. (3H; CH3, J=7.2 Гц); 2.19–с. (3H; CH3); 2.47–c. (3H; CH3); 4.25–кв. (2H; CH2, J=7.2 Гц); 6.20–м. (1H; CH); 8.17‑уш.с. (1H; NH). [79] ИК (KBr) n (см–1): 3293, 1666, 1436, 1224, 1087, 800, 775, 730. [79]

2,5-диметил-3-карбоксипиррол (66).

В колбе с обратным холодильником кипятят смесь 5 г (0,03 моль) 2,5-диметил-3-карбо­этоксипиррола (63), 36 мл метанола и 18 мл 30% раствора NaOH в течение 9 часов. Затем реакционную массу охлаждают и нейтрализуют концентрированной HCl. Выпавший осадок отфильтровывают и сушат на воздухе. Получают 2,7 г (65%) 2,5-диметил-3-карбоксипиррола (66).

Rf = 0,8 (Г:ЭА 1:1); ТПЛ =180-1840 (разл.); ПМР (D2O) d (м.д.): 1.92–с. (3H; CH3); 2.21–c. (3H; CH3); 5.81–c. (1H; CH). ИК (вазелиновое масло) n (см–1): 3260, 3000-2500, 1639.

2,5-диметил-3,4-дийодпиррол (67).

В трехгорлой колбе с дефлегматором, мешалкой, капельной воронкой и термометром, смешивают 0,5 г (0,0036 моль) 2,5-диметил-3-карбоксипиррола (66) и 20 мл метанола. При пере­мешивании в полученную суспензию прикапывают раствор 1,24 г (0,009 моль) K2CO3 в 20 мл воды и нагревают до 650, при этой температуре прибавляют раствор 0,76 г (0,003 моль) I2 и 1,15 г (0,007 моль) KI в 10 мл воды. Реакционную массу перемешивают 20 минут и охлаж­дают. Осадок отфильтровывают, промывают водой и перекристаллизовывают из метанола. Получают 0,56 г (45%) 2,5-диметил-3,4-дийодпиррола (67).

Rf = 0,8 (Г:ЭА 1:3); ТПЛ =116-1200 (разл.); ПМР d (м.д.): 2.28–с. (6H; CH3); 8.01‑уш.c. (1H; NH). Масс спектр m/z (%): 347 (100%).

2,5-диметил-3-иод-4-карбоэтоксипиррол (64).

В трехгорлой колбе с дефлегматором, мешалкой, капельной воронкой и термометром, растворяют 0,5 г (0,003 моль) 2,5-диметил-3-карбоэтоксипиррола (63) в 20 мл метанола. При пе­ремешивании в полученный раствор прикапывают раствор 1,24 г (0,009 моль) K2CO3 в 20 мл воды и нагревают до 650, при этой температуре прибавляют раствор 0,76 г (0,003 моль) I2 и 1,15 г (0,007 моль) KI в 10 мл воды. Реакционную массу перемешивают 20 минут и охлаж­дают. Осадок отфильтровывают и перекристаллизовывают из метанола. Получают 0,69 г (80%) 2,5-диметил-3-иод-4-карбоэтоксипиррола (64).

Rf = 0,7 (Г:ЭА 1:1); ТПЛ =116-1200;

 ПМР (CDCl3) d (м.д.):1.34-тр. (3H; -CH2CH3; J=7.24 Гц) 2.22–с. (3H; CH3); 2.47–c. (3H; CH3); 4.26–кв. (2H; CH2; J=7.24 ГцРРHHsss); 8.18‑уш.c. (1H; NH). 13С‑ЯМР (CDCl3) d (м.д.): 13.89 (2-CH3); 14.19 (3-CH3); 14.30 (OCH2CH3); 50.46 (C-4); 59.58 (C-I); 63.03 (-CH2-); 129.48 (C-5); 135.58 (C-2); 164.62 (C=O). ИК(вазелиновое масло) n (см‑1): 3256, 1675, 1217, 1099, 1029, 773. Масс спектр m/z (%): 293 (40%), 279 (20%), 264 (42%), 248 (28%), 219 (8%), 127 (12%),122 (25%), 93 (30%), 67 (35%), 51 (55%), 42 (100%).

2,5-диметил-3-карбоэтокси-4-нитропиррол (65).

1метод.

В колбе на 25мл с мешалкой растворяют 0.5г (0.003 моль) 2,5-диметил-3-карбоэтоксипиррола (63) в 10мл ацетонитрила. При перемешивании в полученный раствор при комнатной температуре приливают раствор 0.6г (0.004 моль) AgNO2 в 2мл ацетонитрила, затем при этой же температуре прибавляют раствор 0.5г(0.002 моль) I2 в 8мл ацетонитрила. Реакцию проводят в течение 48ч при комнатной температуре в инертной атмосфере в темноте. Выпавший осадок отфильтровывают, разделение жидкой фазы проводят при помощи колоночной хро­матографиии на силикагеле в системе элюэнтов: ЭА:ПЭ (1:3). Получают 0.11г (18%) 2,5-диметил-3-карбоэтокси-4-нитропиррола (65).

Rf =0.6 (ПЭ:ЭА 1:3); Тпл= 110-1130 ; ПМР(CDCl3) d (м.д.): 1.32 м.д.-тр.(3Н, СН2‑СН3, J=7.2 Гц); 2.35 м.д.-с.(3Н, СН3 ); 2.48 м.д.-с.(3Н, СН3); 4.30 м.д.-кв.(2Н, СН2-СН3, J=7.2 Гц); 8.91 м.д.-уш.с.(1Н, NH). ИК(вазелиновое масло) n (см–1) : 3317, 1720, 1680, 1600, 1110, 1020. Масс-спектр m/z(%): 212 (19%), 166 (40%), 122 (53%), 92 (45%), 65 (22%), 51 (16%), 42 (100%).

2 метод.

В колбу на 15мл с обратным холодильником вносят раствор 0.4г(0.001 моль) 2,5-диметил-3-иод-4-карбоэтоксипиррола (64) в 5мл ацетонитрила и добавляют к нему раствор 0.42г (0.003 моль) AgNO2 в 3мл ацетонитрила. Реакционную массу кипятят 2ч при t бани =110° и оставляют на 2 суток стоять при комнатной температуре в темноте. Выпавший осадок отфильтровывают, продукт очищают с помощью колоночной хроматографии насилика­геле(l=17см,d=20см) в системе растворителей диэтиловый эфир: петролейный эфир (1:2). Получают 0.1г (47%) 2,5-диметил-3-карбоэтокси-4-нитропиррола (65).

Rf =0.5(ПЭ:ЭА 1:1); Тпл= 110-1120 ; ПМР(CDCl3) d (м.д.): 1.35 м.д.-тр.(3Н, СН2‑СН3, J=7.1 Гц); 2.35 м.д.-с.(3Н, СН3 ); 2.48 м.д.-с.(3Н, СН3); 4.32 м.д.-кв.(2Н, СН2-СН3, J=7.1 Гц); 8.91 м.д.-уш.с.(1Н, NH). ИК(вазелиновое масло) n (см–1) : 3300, 1720, 1680, 1600. Масс-спектр m/z(%): 212 (19%), 166 (40%), 122 (43%), 92 (45%), 66 (28%), 54 (19%), 42 (100%).

2-формилпиррол (58).

В колбе, снабженной термометром, мешалкой и капельной воронкой и охлаждаемой смесью льда и соли, при температуре 0-50 к 45 мл ДМФА прикапывают 15,4 мл POCl3. К по­лученному фор­милирующему комплексу при температуре не выше 150 прибавляют 10,36 мл (0,15 моль) пиррола (57), после чего повышают температуру до 350 и перемешивают 0,5 часа. Реакционную массу выливают в 150 мл холодной воды, из полученного раствора экстраги­руют диэтиловым эфиром следы не прореагировавшего пиррола (57). Водный слой обрабатывают 150 мл на­сыщенного раствора ацетата натрия и кипятят 0,5 часа с обратным холодильником. Раствор охлаждают и экстрагируют дихлорметаном, экстракт промывают несколько раз водой, удаляя ДМФА. Экстракт сушат сульфатом натрия, растворитель отгоняют, а остаток пе­регоняют в вакууме. Получают 14,25 г (64%) 2-формилпиррола (58).

Rf = 0,6 (Г:ЭА 3:2); ТПЛ = 400; ИК (в тонком слое ): 3260; 1650.

Лит.: ТПЛ =41-440 [83]; ПМР (ацетон-d6) d (м.д.): 6.3–с. (1H; 4-CH); 7.0–д. (1H; 3-CH); 7.3‑с. (1H; 5-CH) [83]; ИК(CCl4) n (см–1): 3450(NH); 1665(C=O); 1655. [83]

2,5-диформилпиррол (61).

1)         Диэтил 2-(пиррол-2-илметилен)малоноат (59).

В круглодонной колбе на 25 мл с насадкой Дина-Старка кипятят смесь 0,3 г (0,0032 моль) 2‑формилпиррола (58), 0,5 г (0,0032 моль) диэтилмалонового эфира, 0,04 г (0,00063 моль) уксусной кислоты и 0,01 г (0,00013 моль) пиперидина в 9 мл бензола в течение 1 часа. Реакционную массу охлаждают до комнатной температуры и промывают полунасыщенным раствором хлорида натрия. Бензольный слой сушат с безводным сульфатом натрия, растворитель отгоняют на роторном испарителе. Получают 0,73 г (97%) диэтил 2-(пиррол-2-илметилен) малоноата (59), который без дополнитель­ной очистки направляют на следующую стадию.

2)         Диэтил 2-[(5-формилпиррол-2-ил)метилен]малоноат (60).

В колбе, снабженной термометром и капельной воронкой и охлаждаемой смесью льда и соли, при температуре 0-50 в атмосфере аргона к 0,3 мл ДМФА прикапывают 0,27 мл POCl3. К полученному формилирующему комплексу при температуре не выше 150 прибавляют 0,63 г (0,0026 моль) диэтил 2-(пиррол-2-илметилен)малоноата (59), после чего повышают температуру до 400 и перемешивают 0,5 часа. Реакционную массу охлаждают, разбавляют хлороформом и промывают водой. Органический слой сушат с безводным сульфатом натрия, растворитель отгоняют на роторном испарителе. Получают 0,38 г (55%) диэтил 2‑[(5‑формилпиррол-2-ил)метилен]малоноата (60), который без дополнительной очистки направляют на следующую стадию.

Характеристики очищенного с помощью колоночной хроматографии (d =1.5 см; l = 20 см) на силикагеле (элюэнт хлороформ: метанол 9:1) продукта: Rf = 0,7 (Хл:МеОН 9:1); ТПЛ = 98–1000; ПМР (CDCl3) d (м.д.): 1.31–тр. (3H; CH2CH3, J=7.26 Гц); 1.37–тр. (3H; CH2CH3, J=7.26 Гц); 4.30–кв. (2H; CH2, J=7.26 Гц); 4.38–кв. (2H; CH2, J=7.26 Гц); 6.68–д.д. (1H; CH, J=2.14 Гц); 6.94–д.д. (1H; CH, J=2.14 Гц); 7.57–c. (-CH=C); 9.65‑с. (CHO); 11.53‑уш.c. (1H; NH); 13С‑ЯМР d (м.д.): 13.88 (OCH2CH3); 13.99 (OCH2CH3’); 61.60 (О‑CH2); 62.11 (О‑CH2’); 119.53 (=С-); 120.49 (С‑4); 121.92 (С-3); 131.85 (C-5); 134.09 (-C=); 135.63 (C-2); 163.30 (С=О); 166.66 (С=О’); 179.78 (CHO). ИК (вазелиновое масло) n (cм‑1): 3300, 1730, 1700, 1670, 1620, 1550. Масс-спектр m/z (%): 265 (71%), 173 (100%), 145 (46%), 119 (30%), 91 (28%), 65 (30%), 39(15%).

3)         2,5-диформилпиррол (61).

В колбе с дефлегматором кипятят 0,56 г (0,0021 моль) диэтил 2‑[(5‑формилпиррол-2-ил)метилен]малоноата (60) в 30 мл 3М раствора NaOH в течение 1 часа. Потемневший раствор охлаждают и нейтрализуют разбавленной серной кислотой до pH=6-7, выпавший коричне­вый осадок отфильтровывают, промывают водой и сушат в вакууме. Получают 0,25 г (96%) 2,5-диформилпиррола.

Rf = 0,3 (Хл:МеОН 9:1); ТПЛ = 112–1140; ПМР (CDCl3) d (м.д.): 7.02–д. (2H; CH, J=2 Гц); 9.77‑с. (2H; CHO); 10.38‑уш.c. (1H; NH); ИК (вазелиновое масло) n (cм‑1): 3140, 1720, 1700. Масс-спектр m/z (%): 123 (65%), 94 (18%), 66 (60%), 39(100%).

Нитрование 2,5-диформилпиррола (61).

В колбе на 25мл с мешалкой растворяют 0.05г (0.0004моль) 2,5-диформилпиррола (61) в растворе 4мл (0.07моль) уксусной кислоты и 2мл (0.02моль) уксусного ангидрида. При перемешивании в полученный раствор прибавляют смесь 0.022мл (0.0005моль) HNO3(98%) и 0.136мл (0.0014моль) уксусного ангидрида. Реакционную смесь перемешивают 2ч при комнатной температуре, а затем прибавляют еще0.022мл (0.0005моль) HNO3(98%) и перемешивают 0.5ч. Далее реакционную массу выливают на небольшое количество льда, нейтрализуют твердой содой до рН= 6-7, приливают 20мл толуола и упаривают азеотропную смесь на роторном испарителе. Затем выпавший осадок промывают ацетоном и упаривают растворитель на роторном испарителе. Получают 0.007г (10%) 2-карбокси-5-формилпиррола (62).

Rf = 0,4(Ме); ТПЛ = 112–1140, ПМР (CDCl3-CD3OD) d (м.д.): 6.15–д. (1H; CH, J=4 Гц); 6.68–д. (1H; CH, J=4 Гц); 7.94‑с. (1H; CHO); ИК (вазелиновое масло) n (cм‑1): 3450, 1720, 1700,1620,1600,1530,1380,1300.

Глицинэтилового эфира хлоргидрат (49).

К суспензии 10,2 г (0,135 моль) глицина (48) в 100 мл 96% этанола прибавляют по каплям 14,6 мл (0,2 моль) тионилхлорида с такой скоростью, чтобы реакционная смесь слабо кипела. Смесь кипятят с обратным холодильником 2 часа. Затем растворитель отгоняют на роторном испарителе, а остаток растворяют при нагревании в 60 мл 96% этанола и охлаждают, выпавшие белые хлопья отфильтровывают и промывают диэтиловым эфиром. Получают 17,8 г (94%) хлоргидрата глицинэтилового эфира (49).

ТПЛ = 138-1400.

Лит.: ТПЛ =145-1460 [16]; ПМР (DMSO-D6/ CDCl3) d (м.д.): 1.27–т. (3Н; CH3, J=7 Гц); 3.73–с. (2Н; СH2-N); 4.23–кв. (2H; CH2, J=7Гц); 8.55-уш.с. (3H; NH) [16]; ИК (KBr) n (см–1): 3330-2300 ( +NH); 1745(C=O), 1250, 1050, 990. [16]

N-формилглицина этиловый эфир (50).

В колбе с обратным холодильником и капельной воронкой смешивают 25 мл (0,37 моль) этилортоформиата, 13 мг п-толуолсульфокислоты и 17,8 г (0,13 моль) хлоргидрата глицинэтилового эфира (49) и нагревают до кипения. В полученную смесь прикапывают 19,5 мл (0,14 моль) триэтиламина и кипятят 20 часов. Затем реакционную массу охлаждают до комнатной температуры, выпавший осадок гидрохлорида триэтиламина отфильтровывают. Фильтрат упаривают на ¾ и охлаждают до –50, выпавший гидрохлорид триэтиламина снова отфильтровывают, а фильтрат перегоняют в вакууме. Получают 9,5 мл (66%) этилового эфира N‑формилглицина (50).

nD19,5=1.4510 Ткип=81-900/0,05 мм.

Лит.: nD20=1.4530 Ткип=1100/0,1 мм.[16].

Этиловый эфир изоциануксусной кислоты (51).

В колбе, снабженной термометром, мешалкой и капельной воронкой и охлаждаемой смесью льда и соли, при температуре 00 к раствору 10,93 г (0,083 моль) этилового эфира N‑формилглицина (50) и 29 мл (0,21 моль) триэтиламина в 85 мл дихлорметана прикапывают 12,8 г (0,083 моль) POCl3 и смесь перемешивают 1 час при этой температуре. Затем медленно прибавляют при 20-250 раствор 16,7 г Na2CO3­ в 80 мл воды, соблюдая указанный интервал температур и полученную смесь перемешивают 30 минут при этой температуре. Органическую фазу отделяют, а из водного слоя экстрагируют дихлорметаном. Объединенные органические фазы промывают насыщенным раствором NaCl и сушат над K2CO3. После отгонки растворителя остаток перегоняют в вакууме. Получают 6,21 г (66%) этилового эфира изоциануксусной кислоты (51).

nD20=1.4175 Ткип=85-860/15 мм. ПМР (CDCl3) d (м.д.): 1.25–т. (3Н; CH3, J=7.16 Гц); 4.20–с. (2Н; СH2-N); 4.24–кв. (2H; CH2, J=7.16 Гц).

Лит.: Ткип=80-820/12 мм.[16]. ПМР (CCl4) d (м.д.): 1.33–т. (3Н; CH3, J=7 Гц); 4.25–с. (2Н; СH2-N); 4.28–кв. (2H; CH2, J=7 Гц) [16]; ИК (пленка) n (см–1): 2150 (NС); 1750(C=O) [16].

2-метил-6-нитробензотиазол (47).

В колбе с дефлегматором готовят нитрующую смесь из 0,7 мл 73% HNO3 и 0,83 мл концентрированной H2SO4 к которой прикапывают 1 мл (0,008 моль) 2-метилбензотиазола (46). Реакционную массу греют при 900 в течение 5 часов и выливают на лед. Выпавший осадок отфильтровывают и промывают большим количеством воды. Перекристаллизовывают из метанола. Получают 0,22 г (20%) 2-метил-6-нитробензотиазола (47).

Rf = 0,9 (Хл:МеОН 9:1); ТПЛ = 106–1100; ПМР d (м.д.): 2.9–с. (3H; CH3); 8.03–.д. (1H; CH, J=8.96 Гц); 8.35–д.д. (1H; CH, J=2.29 Гц); 8.78–д. (1H; CH, J=2.29Гц). Масс-спектр m/z (%): 194 (94%), 164 (48%), 148 (50%), 136 (30%), 107 (35%), 69 (30%), 63(100%).

6. Выводы.

1.         Проведен анализ литературы и подобраны методы получения высоко сопряженных порфиринов.

2.         Предложен новый метод синтеза 2,5-диформилпиррола.

3.         Разработаны методы синтеза 5 новых соединений: диэтил 2-(пиррол-2-илметилен)малоноат (59), диэтил 2‑[(5‑формилпиррол-2-ил)метилен]малоноат (60), 2,5-диметил-3-йод-4-карбоэтокси­пиррол (64), 2,5-ди­метил-3-карбоэтокси-4-нитропиррол (65), 2,5-диметил-3,4-ди­йодпиррол (67).

7. Литература.

[1]        Lash T.D. and Novak B.H. New highly conjugated porphyrin chromophores: synthesis of mono- and diphenanthroporphyrins. // Tetrahedron Letters 1995 v.36 №25 p.4381-4384.

[2]        Alonso C.M.A., Neves M., et al. Reaction of b-amino-meso-tetraphenylporphyrin with a,b-unsaturated carbonyl compounds: an approach to fused pyridinoporphyrins. // Tetrahedron Letters 1997 v.38 №15 p.2757-2758.

[3]        Vicente M., Jaquinod L., Khoury R., Mandrona A., Smith K.M. Synthesis and chemistry of new benzoporphyrins. // Tetrahedron Letters 1999 v.40 p.8763-8766.

[4]        Silva A., Faustino M., Silva T., et al. A new approach to the synthesis of mono- and bis-pyrroloporphyrins. // Abstracts of ICPP-1, Dijon, France, 2000, post 402.

[5]        Lin Y. and Lash T.D. Porphyrin synthesis by the “3+1” methodology: a superior approach for the preparation of porphyrins with fused 9.10-phenanthroline subunits. // Tetrahedron Letters 1995 v.36 p.9441-9444.

[6]        Novak B.H. and Lash T.D. Porphyrins with exocyclic rings. Part 11. Synthesis and characterization of phenanthroporphyrins, a new class of modified porphyrin chromophores. // J.Org.Chem. 1998 v.63 p.3998-4010.

[7]        Lash T.D., Wijesinghe C., Osuma A.T., Patel J.R. Synthesis of novel porphyrin chromophores from nitroarenes: further applications of the Barton-Zard pyrrole condensation. // Tetrahedron Letters 1997 v.38 №12 p.2031-2034.

[8]        Lash T.D. Porphyrins with exocyclic rings. Part 10. Synthesis of meso,b-propanoporphyrins from 4,5,6,7-tetrahydro-1H-indoles. // Tetrahedron 1998 v.54 p.359-374.

[9]        Byun Y.-S. And Lightner D.A. Synthesis and properties of a bilirubin analog with propionic acid groups replaced by carboxyl. //J.Heterocycl. Chem. 1991 v.28 № 7 p.1683-1692.

[10]      Cho D.H., Lee J.H., Kim B.H. An improved synthesis of 1,4-bis(3,4-dimethyl-5-formyl-2-pyrryl)butadiyne and 1,2-bis(3,4-dimethyl-5-formyl-2-pyrryl)ethyne. // J.Org.Chem. 1999 v.64 p.8048-8050.

[11]      Piloty O., Hirsch P. Pyrrolsynthesen aus Aminoketonen mit ketonen und ketonsaureestern. //J.Liebigs Ann.Chem. 1913 B.395 s.63-74.

[12]      Treibs A., Zinsmeister R., Schmidt R. Uber die Knorrschepyrrolsynthese. //Chem.Ber. 1957 B.90 s.79-84.

[13]      Johnson A.W., Price R. 2,3,4,5-Tetramethylpyrrole. //Org. Synthesis 1962 v.42 p.90‑92.

[14]      Treibs A., Schmidt R. Syntheische Arbeiten auf dem chlorophyllgebiet synthese des 2‑Desathylphylloporphyrins. //J.Liebigs Ann.Chem. 1952 B.577 s.105-115.

[15]      All G.H., Knowles W.S. The mechanism of the N,N-dichloroalkylamine rearrangement. //J.Org.Chem. 1960 v.25 p.2047-2048.

[16]      Титце Л., Айхер Т. //Препаративная органическая химия. Пер. с нем. под ред. Алексеева Ю.Е. М.: Мир, 1999. 704 с.

[17]      Миронов А.Ф., Апаркон Х.Х., Евстигнеева Р.П. О лабильности b‑ диэтиламиноэтильной группы в условиях образования пиррольного цикла по Кнорру. //ХГС 1973 №12 стр.1643-1645.

[18]      Nagafuji P. and Cushman M. A general synthesis of pyrroles and fused pyrrole systems from ketones and amino acids. //J.Org.Chem. 1996 v.61 №15 p.4999-5003.

[19]      Barret A.G.M., Graboski G.G. Conjugated nitroalkenes: versatile intermediates in organic synthesis. //Chem.Rev. 1986 v.86 №5 p.751-762.

[20]      Chandrasekar P. and Lash T.D. Versatile “3+1” syntheses of acenaphthoporphyrins, a new family of highly conjugated tetrapyrroles. // Tetrahedron Letters 1996 v.37 №28 p.4873‑4876.

[21]      Murashima T., Tamai R., Fujita K., Uno H. and Ono N. Ambident reactivity of nitro heteroaromatic anions. // Tetrahedron Letters 1996 v.37 №46 p.8391-8394.

[22]      Fumoto Y., Uno H., Ono N., et al. Preparation of 5-unsubstituted 4-formylpyrrole-2-carboxylates and conversion to cycloalkano-oligopyrroles. // J.Chem.Soc.PerkinTrans.1. 2000 p.2977-2981.

[23]      Gilchrist T.L. Synthesis of aromatic heterocycles. //J.Chem.Soc.PerkinTrans.1. 1998 №3 p.615-628.

[24]      Chiu P. -K., Lui K. -H., Maini P.N. Sammes M.P. Novel synthesis of 3H-pyrroles, and novel intermediates in the Paal-Knorr 1H-pyrrole synthesis: 2‑hydroxy‑3,4‑dihydro‑2H‑pyrroles from 1,4-diketones and liquid ammonia. //J.Chem.Soc.,Chem.Commun. 1987 p.109-110.

[25]      Niziurski-Mann R.E. and Cava M.P. Synthesis of mixed thiophene-pyrrole heterocycles. //J.Heterocycles 1992 v.34 №10 p.2000-2021.

[26]      Benary E. Synthese von pyrrol- und furan-derivaten aus dichlor-ather, acetessigester und ammoniak. //Chem.Ber. 1911 B.44 s. 493-496.

[27]      Khotinsky E. Darstellung des pyrrols. //Chem.Ber. 1909 B.9 s.2506-2507.

[28]      Chiu P. -K. and Sammes M.P. The synthesis and chemistry of azolenines. Part 18. Preparation of 3-etoxycarbonyl‑3H‑pyrroles via the Paal‑Knorr reaction, and sigmatropic rearrangements involving competitive ester migrations to C‑2, C‑4 and N. //Tetrahedron 1990 v.46 №10 p.3439-3456.

[29]      Rigo B., Valligny D., Taisne S., Couturier D. Disilylated compounds as precursors of heterocycles. //J.Synth.Commun. 1988 v.18 p.170-171.

[30]      Hendrickson J.B., Ress R.W., Templeton J.F. General heterocycle synthesis. Use of acetyl‑enedicarboxylic esters. //J.Am.Chem.Soc. 1964 v.86 p.107-111.

[31]      Grob C.A., Schacl H.P. Eine nene pyrroling- synthese II. Teil untersuchungen inder pyrrolreihe. //Helv.Chim.Acta 1955 v.38 p.1121-1127.

[32]      Spence J.D. and Lash T.D. Porphyrins with exocyclic rings. Part 14. Synthesis of tetraacenaphthoporphyrins, a new family of highly conjugated porphyrins with record‑breaking long‑ wavelengh electronic absorptions. //J.Org.Chem. 2000 v.65 p.1530-1539.

[33]      Bastian J.A. and Lash T.D. Porphyrins with exocyclic rings. Part 12. Synthesis of meso, b‑butano- and meso, b‑pentanoporphyrins from cycloalka[b]pyrrole. //Tetrahedron 1998 v.54 p.6299-6310.

[34]      Gotthardt H., Huisgen R. And Bayer H.O. 1.3-Dipolar cycloaddition reactions. L III. The question of the 1.3-dipolar nature of 2-oxazolin-5-ones. //J.Am.Chem.Soc. 1970 v.92 p.4340‑4343.

[35]      Arcadi A. and Rossi E. Synthesis of functionalised furans and pyrroles through annulation reactions of 4-pentynones. //Tetrahedron 1998 v.54 p.15253-15272.

[36]      Sessler J.L., Davis J.M., Lynch V. Synthesis and characterization of a stable smaragdyrin isomer. //J.Org.Chem. 1998 v.63 p.7062-7065.

[37]      Alberola A., Ortega A.G., et.al. Versatility of Weinreb amides in the Knorr pyrrole synthesis. //Tetrahedron 1999 v.55 p.6555-6566.

[38]      Hombrecher H.K., Horter G. Synthesis of pyrroles via ethyl N- (3‑oxo‑1‑alkenyl) glycinates. //Synthesis 1990 p.389-391.

[39]      Ferraz H.M.C., Oliveira E.O., et.al. A new and efficient approach to cyclic b‑enamino esters and b‑enamino ketones by iodine- promoted cyclization. //J.Org.Chem. 1995 v.60 p.7357-7359.

[40]      Ferraz H.M.C., Pereira F.L.C., et.al. Synthesis of N‑substituted pyrrole and tetrahydroindole derivatives from alkenyl b‑dicarbonyl compounds. //Tetrahedron 1999 v.55 p.10915‑10924.

[41]      Рындина С.А., Кадушкин А.В., Соловьева Н.П., Граник В.Г. Циклизация Торпа‑ Циглера в синтезе 3‑ амино‑ 4‑ цианопиррола. //ХГС 2000 т.26 с.1643-1655.

[42]      Chen N., Lu Y., Gadamasetti K., et.al. A short, facile synthesis of 5-substituted 3‑amino‑1H‑pyrrole‑2‑carboxylates. //J.Org.Chem. 2000 v.65 p.2603-2605.

[43]      Порфирины: структура, свойства, синтез. // Под ред. Ениколопяна Н.С. М.: Наука, 1985. 333с.

[44]      Rose E., Soleihavoup M., et al. Bis-faced aminoporphyrin templates for the synthesis of chiral catalysts and hemeprotein analogues. // J.Org.Chem. 1998 v.63 №6 p.2042-2044.

[45]      Ono N., Muratani E., et al. Synthesis of 2,7,12,17‑tetraaryl-3,8,13,18-tetranitroporphyrins; electronic effects on aggregations of porphyrins. // J.Chem.Soc., Perkin Trans.1 1998 №22 p.3819-3824.

[46]      Tse M.K., Zhou Z., et al. Regioselective bromination and subsequent suzuki cross-coupling of highly electron deficient 5,10,15,20-tetrakis(trifluoromethyl)porphyrin. // Tetrahedron 2000 v.56 p.7779-7783.

[47]      Czuchajonski L., Habdas J., et al. Porphyrinyl-uridines as the first water soluble porphyrinyl-nucleosides. // Tetrahedron Letters 1991 v.32 p.7511-7514.

[48]      Shin J.-Y., Minezawa N., et al. Study for expanded porphyrins producted during the condensation reaction of pentafluorobenzaldehyde and pyrrole. // Abstracts of ICPP-1, Dijon, France, 2000, post 562.

[49]      Ono N. A new synthesis of highly conjugated porphyrins. // Abstracts of ICPP-1, Dijon, France, 2000, sym 147.

[50]      Ono N., Hironaga H., et al. A new synthesis of pyrroles and porphyrins fused with aromatic rings. // J.Chem.Soc., Perkin Trans.1 1996 p.417-423.

[51]      Nguyen L.T., Senge M.O., Smith K.M. One-pot synthesis of regiochemically pure porphyrins from two different pyrroles. // Tetrahedron Letters 1994 v.35 p.7581-7584.

[52]      Nguyen L.T., Senge M.O., Smith K.M. Simple methology for syntheses of porphyrins possessing multiple peripheral substituents with an element of symmetry. // J.Org.Chem. 1996 v.61 p.998-1003.

[53]      Березин Б.Д. // Координационные соединения порфиринов и фталоцианина / М.: Наука 1978 150с.

[54]      Arsenault G.P., Bullock E., MacDonald S.F. Pyrromethanes and porphyrins there from. // J.Am.Chem.Soc. 1960 v.82 p.4384-4387.

[55]      Clarke O.J., Boyle R.W. Selective synthesis of asymmetrically substituted 5,15‑diphenylporphyrins. // Tetrahedron Letters 1998 v.39 p.7167-7168.

[56]      Lee C.-H., Li F., Iwamoto K., Lindsey J.S. Synthetic approaches to regioisomerically pure porphyrins bearing four different meso-substituents. // Tetrahedron 1995 v.51 p.11645-11654.

[57]      Balasubramanian T., Lindsey J.S. synthesis of b-substituted porphyrin building blocks and conversion to diphenylethyne-linked porphyrin dimers. // Tetrahedron 1999 v.55 p.6771‑6784.

[58]      Maruyama K., Nagata T., Ono N., Osuka A. A synthesis of unsymmetric porphyrin dimers // Bull.Chem. Soc.Jpn. 1989 v.62 p.3167-3170.

[59]      Ema T., Kuroda Y., Ogoshi H. Selective syntheses of unsymmetrical meso-arylporphyrins. // Tetrahedron Letters 1991 v.32 p.4529-4532.

[60]      Wallaca D.M., Leung S.H., Senge M.O., Smith K.M. Rational tetraarylporphyrin syntheses: tetararylporphyrins from the MacDonald route. // J.Org.Chem. 1993 v.58 p.7245-7257.

[61]      Мамардашвили Н.Ж., Голубчиков О.А. Синтез порфиринов из дипирролилметанов. // Успехи химии 2000 т.69 с.342-354.

[62]      Scog W.R., Yong H.N., Youngkyu D. Synthesis, structures and electrchemical characterization of ferrocene-substituted porphyrin and porphodimethene. // Inorg.Chim.Acta 2000 v.309 p.49-56.

[63]      Tjahjono D.H., Akutsu T., et al. Cationic porphyrins bearing diazolium rings: synthesis and their interaction with calf thymus DNA. // Biochimica et Biophysica Acta/General Subjects 1999 v..1472 p.333-343.

[64]      Smith K.M., Craig J., Medforth D.T.L. Syntheses, stability and tumorcidal activity of porphyrin dimers and trimers with ether linkages. // Tetrahedron Letters 1990 v.31 p.7265-7270.

[65]      Khoury R.G., jaquinod L., Smith K.M. Metal ion-induced self assembly of open-chain tetrapyrrole derivatives: double stranded dinuclear complexes from 10-oxo-5,15-biladienes. // Tetrahedron 1998 v.54 p.2339-2346.

[66]      Dolphin D.M., Johnson A.W., Long J. Porphyrinogens and porphodimethenes, intermediates in the synthesis of meso-tetraphenylporphyrins from pyrroles and benzaldehyde. // J.Heterocycl.Chem. 1970 v.7 p.275-283.

[67]      Smith K.M., Minnetian O.M. Anomalous cyclization of 1,19-dimethyl-a,c-dimethyl-a,c-biladiens: direct synthesis of meso-aminoporphyrin derivatives. // Synth.Commun. 1985 v.15 p.75-80.

[68]      Smith K.M., Minnetian O.M. Cyclization of 1’,8’-dimethyl-a,c-biladiene salts to give porphyrins: a study with various oxidizing agents. // J.Chem.Soc.,Perkin Trans.1 1986 p.277‑280.

[69]      Boudif A., Gimenez S., Loock B., Momenteau M. vic-Diacrylic ester porphyrins as starting materials for monobenzoporphyrins and opp-dibenzoporphyrins syntheses. // Can.J.Chem. 1998 v.76 p.1215-1219.

[70]      Boudif A., Momenteau M. A new convergent method for porphyrin synthesis based on a “3+1 condensation. // J.Chem.Soc.,Perkin Trans.1 1996 p.1235-1241.

[71]      Kai S., Suzuki M., Masaki Y. The first synthesis of mononazaporphyrins bearing a nitrogen atom at the peripheral position. // Tetrahedron Letters 1998 v.39 p.4063-4066.

[72]      Lash T.D., Chandrasekar P., et al. Porphyrins with exocyclic rings. Part 13. Synthesis and spectroscopic characterization of highly modified porphyrin chromophores with fused acenaphthylene and benzothiadiazole. // J.Org.Chem. 1998 v.63 p.8455-8469.

[73]      Lash T.D., Thompson M.L., et al. Recent studies on the synthesis of porphyrins with fused aromatic rings. // Abstracts of ICPP-1, Dijon, France, 2000, post 469.

[74]      Сизов А.Ю., Яновская Л.А., Домбровский В.А. Синтез эфиров 2-замещенных 4-кетопентановых кислот алкилированием СН-кислот хлорацетоном в условиях межфазного катализа. // Известия РАН 1990 №2 с.473-474.

[75]      Cresp T.M., Sargent M.V. Synthesis and paratropicity of heteroatom-bridged annulenones.//J.Chem.Soc., Perkin Trans.1.1973.N.23.P.2961-2971.

[76]       Muchowski J.M. and Hess P. Lithiation of the 6-dimethylamino-1-azafulvene dimer. A versatile synthesis of 5-substituted pyrrole-2-carboxaldehydes. //J.Tetrahedron Lett.1988.V.29.N26.P.777-780.

[77]       Muchowski J.M. and Hess P. Lithiation of the dimer of 3-bromo-6-dimethylamino-1-azafulvene. Efficacious synthesis of 4-mono- and 4,5-disubstituted pyrrole-2-carboxaldehydes.//J.Tetrahedron Lett.1988.V.29.P. 3215-3219.

[78]      Bergman J., Renstroem L., Sjoerberg B. The synthesis of pyrrole-2.5-dicarbaldehydes.// J.Tetrahedron. 1980. V.36. P.2505-2509.

[79]      Muradin-Szweykowska M., Peters A.J. and Lugtenburg J. The interaction of bacterioopsin with 11,14-bridged retinals. The sinthesis of 13-demethyl-11,14-imino,13-demethyl-11,14-thio-13-demethyl-11,14-etheno-11,14-imino-retinal and their binding with bacterioopsin.//J.Tetrahedron.1984.V.101.P.5537-5540.

[80]       Degani I., Fochi R. and Regondi V. The synthesis of pyrrole-2,5-dicarbaldehydes.//Synthesis.1981.N51.P.4623-4636.

[81]       Cadamuro S., Degani I., Dughera S., Fochi R., Gatti A. and Piscopo L. General methods for synthesizing 2,4-diacylpyrroles and their precursors containing one or two masked acyl groups.//J. Chem. Soc. Perkin Trans.1 1993.N22.P.273-279.

[82]       Cadamuro S., Degani I., Dughera S., Fochi R., Gatti A. and Piscopo L., A convenient general method for the synthesis of pyrrole-2,5-dicarbaldehydes.// J. Chem. Soc. Perkin Trans.1.1993.N49.P.2939-2943.

[83]      Пожарский А.Ф., Анисимова В.А., Цупак Е.Б. // Практические работы по химии гетероциклов. / Издательство Ростовского университета 1988, 151с.

[84]      Beilsteins Handbuch der Organischen Chemie. 1921 B.3 s.754.

[85]      Лазарев Н. В., “Вредные вещества в промышленности”, Ленинград, Химия, 1-3 т., 1976.

[86]      Цыгальницкий В. М., “Охрана труда и техника безопасности в микробиологических производствах”, Л-д, Химия, 1990.

[87]      Баратова А. М., Корольченко А. Я., “Пожарная опасность веществ и материалов, применяющихся в химической промышленности”, М., Химия, 1-2 т., 1990.

[88]      Общесоюзные нормы технологического проектирования “Определение категорий помещений по взрывоопасной и пожарной опасности” (ОНТП 24-86), М., ВНИИПО МВД СССР, 1986.

[89]      Бобков А. С., Блинов А. А., Николаева Т. Г., “Охрана труда при производстве и переработке полимерных материалов”, М., Химия, 1986.

[90]      Санитарные нормы проектирования промышленных предприятий СН-245-71, М., Атомиздат, 1980.

[91]      Правила устройства электроустановок”, М., Атомиздат, 1986.

[92]      Catalog Handbook of Fine Chemicals. Aldrich 1998-1999.

[93]      Семейкин А.С., Кузьмин Н.Г. Койфман О.И. Синтез 5,15‑дифенил‑2,3,7,8,12,13,17,18‑октаметилпорфина и его производных. // Известия вузов. Химия и химическая технология. 1988. т.31. 6.стр.39–44.

[94]      Paine J.B. and Dolphyn D. Pyrrole chemistry. An improved synthesis of ethyl pyrrole‑2‑carboxylate esters from diethyl aminomalonate. // J.Org.Chem. 1985. V.50. №26. p.5598–5604.

[95]      Синтезы органических препаратов. Сборник 2. ИЛ, 1949.

[96]      Catalog Handbook of Fine Chemicals. Aldrich 1995-1996.

[97]      Beilstein handbook of organic chemistry. 1979 v.20/5 p.64-65.


* В литературном обзоре соединения пронумерованы начиная с (1).


Страницы: 1, 2, 3


© 2010 Рефераты