Рефераты

Учебное пособие: Ферромагнитные жидкости

Наиболее распространенным способом учета диполь-дипольного взаимодействия является введение так называемого эффективного поля. В случае диэлектриков, поле, реально действующее на один из диполей системы представляется в виде . Введение этого понятия для расчета дипольного взаимодействия молекул диэлектрика, как известно, дает теория Лоренца, из которой, по-существу, и следует теоретическая кривая Клаузиса-Моссоти. Согласно этой теории значение , определяющее эффективность диполь-дипольного взаимодействия должно быть равным . Однако, несмотря на распространение этой теории, ее применимость не подтверждена даже для диэлектриков с неполярными молекулами, для которых она и была разработана. Поэтому, возможность описания с достаточной точностью с помощью этой теории системы магнитных диполей также вызывает сомнение. Вместе с тем, очевидно, что для первоначальных оценок возможно использование общей теории эффективного поля. В этом случае для намагниченности МЖ в приближении монодисперсности может быть записано выражение:

, ()

где m – магнитный момент дисперсной частицы, n – числовая концентрация частиц,  - константа эффективного поля.

Из (0) для нетрудно получить:

 , ()

где  - объемная концентрация дисперсной фазы, - объем дисперсной частицы.

Последняя формула может быть использована для расчета эффективных полей и оценки эффективности диполь-дипольного взаимодействия дисперсных частиц. При этом для расчета первого члена () может быть использовано известное значение намагниченности насыщения магнетита  и определенный с помощью электронного микроскопа средний объем дисперсных частиц, позволяющие рассчитать момент частицы (). Однако, намагниченность насыщения магнетита может колебаться в некоторых пределах [125 МД], а определение среднего объема магнитного керна частицы с помощью электронного микроскопа также представляет трудность, так как она может иметь немагнитный слой [13 МД]. В этой связи более корректным является определение величины  как углового коэффициента начального участка зависимости , где вклад взаимодействия частиц пренебрежимо мал.

Другой подход к определению эффективных полей связан с анализом действующих на дипольную частицу сил [126 МД]. В работе [127 МД] на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках. Механический перенос подхода, использованного при ее выводе, возможный благодаря глубокой аналогии между законами электрической поляризации и намагничивании, позволяет получить аналогичную формулу [М статья в МГ] для расчета эффективных магнитных полей в магнитных жидкостях в приближении однородности среды:

 ()

Как следует из [3], полученное выражение для эффективного поля согласуется с формулой Лоренц-Лоренца при выполнении условия

, (2)

которое непосредственно следует из того, что функция Клаузиса-Моссоти не зависит от плотности (концентрации диполей):

 (3)

Выражение (1) для эффективного поля может быть представлено в виде , т.е.

,

откуда для параметра эффективного поля  следует:

. (4)

Полученная формула позволяет рассчитать параметр эффективного поля по экспериментально полученной зависимости .

Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3-5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы [6] было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости , находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в [3] для жидкого диэлектрика:

, (5)

где  - концентрация дипольных частиц.

Можно предположить, что в общем случае, с учетом изменения температуры это выражение должно быть дополнено слагаемым , т.е. . Изменение температуры определится выражением для магнетокалорического эффекта:

. (6)

Тогда, с учетом предложенного характера виртуального перемещения и выражения для изменения температуры  можно получить:

 (7)

Наложим ограничение на процесс виртуального перемещения, предположив, что оно не сопровождается изменением концентрации дипольных частиц. В этом случае, второй член в выражении (5) можно положить равным нулю. Тогда, окончательно, для изменения полной энергии с учетом  получим:

 (8)

Приравняем полученное выражение для  работе  пондеромоторных сил, взятой с обратным знаком, т.е. . С учетом этого, нетрудно получить:

.

Используя соотношения векторного анализа

 (9)

С учетом того, что , получим:

 (10)

В работе [2] для плотности сил в дипольном приближении найдено следующее выражение:

 (11)

Приравнивая (10) и (11), с учетом отсутствия в МЖ пространственной дисперсии  и токов проводимости, получим:

 (12)

Из формулы (12) видно, что величина эффективного поля связана с магнитной восприимчивостью и ее производной по температуре и может быть рассчитана при использовании зависимости магнитной восприимчивости от температуры. По-видимому, впервые (12) было приведено в работе [7] без вывода.

Условие согласуемости (12) с формулой Лоренц-Лоренца для эффективного поля

 имеет вид:

 (13)

Соотношение (13) может быть использовано для оценки в случае применимости формулы Лоренц-Лоренца.

Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры.

В случае парамагнитной жидкости для температурной зависимости магнитной восприимчивости справедлив закон Кюри:

 и  (14)

Подставив эти выражения в формулу (12), получим: , что и следовало ожидать для системы с невзаимодействующими частицами.

Для парамагнитной жидкости, с магнитной восприимчивостью, подчиняющейся закону Кюри-Вейсса,

 ; , (15)

где  - температура Кюри. Формула (12) в этом случае дает:

 (16)

Приравняв (16) к выражению для эффективного поля записанного в виде  и учитывая, что , получим:

 (17)

Последнее соотношение, с учетом выражения (15) для  дает , что, как известно, следует также непосредственно из закона Кюри-Вейсса. Проведенный анализ позволяет предположить возможность применения формулы (12) для расчета эффективных полей и при других формах зависимости , в том случае, когда выполняется поставленное при ее выводе требование однородности среды.

Используя экспериментальные результаты исследования концентрационных и температурных зависимостей магнитной восприимчивости, полученных в [Мои раб.] проведем расчеты эффективных полей в однородных магнитных жидкостях. На рисунке 16 представлены результаты расчета параметра эффективного поля  для магнитной жидкости с исходной плотностью  , проведенного с помощью формулы (0) при использовании концентрационной зависимости магнитной восприимчивости.

Рисунок 16. Результаты расчета параметра эффективного поля п

Отметим, что в начальном интервале концентраций () зависимость  является практически линейной, поэтому расчеты для  дали нулевые значения. Начиная с концентрации ,  становится отличным от нуля и претерпевает интенсивный рост в области отмеченной ранее аномалии в концентрационной зависимости магнитной восприимчивости. В дальнейшем рост  с увеличением концентрации насыщается, а при  этот параметр начинает уменьшаться. Для проведения подобных оценок с помощью другого описанного метода, расчетной формулой которого для оценки является выражение (?), необходимо экспериментально полученную концентрационную зависимость представить в виде конкретной функциональной зависимости. Анализ результатов концентрационных исследований магнитной восприимчивости позволяет аппроксимировать экспериментальные зависимости, представленные на рис.17 линейно-кусочной зависимостью типа :


Рисунок 17. Зависимость действительной части магнитной восприимчивости (кривая 2, f=200 Гц) и магнитной восприимчивости в постоянном поле (кривая 1) от объемной концентрации дисперсной фазы при напряженности измерительного поля 160 А/м.

 

  ( )

 

В этом случае для начального участка зависимости  получим , вследствие чего первый член в квадратных скобках выражения (3.18) равен 1 и . Для интервала концентраций, превышающих , согласно (0)  Использование этой зависимости дает для эффективного поля  и его параметра  следующие выражения:

 .

На рисунке 18 приведены результаты расчета  во всем исследованном интервале концентраций.

Рисунок 18. Результаты расчета параметра эффективного поля по формуле.


Как видно из рисунков ? и ?, расчет для рассматриваемого образца МЖ при некоторой характерной концентрации параметр эффективного поля скачкообразно приобретает ненулевые значения. При дальнейшем увеличении концентрации дисперсных частиц  не сохраняет постоянное значение. Это может указывать на ограниченность применения теории эффективных магнитных полей к магнитным жидкостям, что с одной стороны обусловлено возможностью нарушения однородности среды вследствие предрасположенности ее к структурированию, с другой – недостатками самой теории. Действительно, как уже было указано выше, экспериментальные зависимости  были получены разбавлением исходного образца керосином. В результате этого, при некоторой концентрации  ( 5,2 % для данного образца) происходит частичное эмульгирование магнитной жидкости (возникновение микрокапельных агрегатов). Напряженность поля внутри микрокапельного агрегата с учетом размагничивающего поля может быть определена выражением  = . Значение размагничивающего фактора  для сферической капли близко к , при этом, в случае деформации микрокапли в магнитном поле, происходит его уменьшение. Можно предположить, что значения  и  имеют близкие значения, в результате чего , что характерно для систем со слабым взаимодействием частиц. Этим и можно объяснить линейность начального участка экспериментальной концентрационной зависимости магнитной восприимчивости ряда образцов и получение нулевых значений по расчетным формулам. Зависимость  от концентрации частиц при  связана с известными недостатками самой теории эффективного поля, анализ которых будет проведен ниже. Расчет эффективных магнитных полей возможен также и с помощью температурной зависимости магнитной восприимчивости. С этой целью экспериментально полученные зависимости необходимо аппроксимировать в кюри-вейссовскую функцию. Как можно судить по рис.?, такая аппроксимация возможна в области исследованных температур, превышающих . В этом случае, для напряженности эффективного поля справедливо выражение ( ), которое для  дает:

 ( )

(Определение  должно производиться путем экстраполяции зависимости  в область низких температур). В таблице 3.3? приведены результаты расчета  для МЖ с различным объемным содержанием дисперсной фазы по температурной зависимости  () и по ее концентрационной зависимости с помощью формулы (3.18?), . Для расчета  выбирался температурный интервал , который соответствует температурам, при которых были проведены концентрационные исследования магнитной восприимчивости. При этом, как уже указывалось выше, при определении  осуществлялся учет теплового расширения дисперсионной среды, для чего экспериментальные зависимости перестраивались с учетом изменения магнитной восприимчивости за счет изменения концентрации при тепловом расширении. Указанное изменение магнитной восприимчивости определялось с помощью концентрационных зависимостей этого параметра, полученных в соответствующем температурном интервале. Как видно из представленной таблицы более удовлетворительное согласие между  и выполняется в области высоких концентраций, где магнитную жидкость можно считать подобной гомогенной среде. Так как, а области температур около  наблюдается изменение угла наклона зависимости , то формальное использование для расчета напряженности эффективного поля формулы ( ) дает ее скачкообразное изменение в области указанной температуры.

Таким образом, расчеты эффективного поля показали, что не остается постоянным в исследованном концентрационном интервале. Расчетные значения изменяются также при понижении температуры до некоторого ее значения. Можно предположить, что это связано с изменением структурного состояния магнитного коллоида при понижении его температуры и в процессе приготовления образцов промежуточной концентрации. Вместе с тем, следует отметить, что отклонение от теории Лоренц-Лоренца непосредственно связано также с повышающейся ролью локальных полей при понижении температуры и увеличении концентрации. Согласно [61 М Д], в дипольных жидкостях диполь испытывает со стороны соседних диполей ориентационное воздействие как при существовании намагничивающего поля, так и при его отсутствии. В результате этого, вращательное движение диполя сводится к вращательным качаниям около некоторой равновесной ориентации. Поворот равновесной ориентации, определяемой локальным полем в сторону намагничивающего (эффективного) поля в значительной мере зависит от соотношения численных значений намагничивающего и локального полей. При этом, новая равновесная ориентация совпадает с направлением результирующего поля. Таким образом, локальное поле, препятствует ориентации моментов частиц по намагничивающему полю, что фактически означает уменьшение эффективного поля. Развитие теории поляризации жидких диэлектриков на основе использования идеи локального поля предпринималось Дебаем, Л.И.Френкелем, А.И. Губановым и др. [61 МД], однако даже в этом случае не удалось полностью избавиться от противоречий, возникающих при применении теории Лоренц-Лоренца для вычисления поляризации и диэлектрической проницаемости дипольных жидкостей. Магнитные жидкости являются более сложным объектом с полидисперсными частицами, способными под воздействия поля или других факторов, связанных с их коллоидным состоянием, образовывать сложные магнито-структурные связи, оказывающие существенное влияние на процессы намагничивания таких систем. Поэтому, применение какой-либо существующей или создание новой теории намагничивания магнитных жидкостей представляет существенные трудности. Тем не менее, такие попытки неоднократно предпринимались в ряде работ, анализ большинства которых проведен А.Ф.Пшеничниковым и А.В. Лебедевым в [?]. В качестве приоритетных теоретических моделей ими были выделены среднесферическое приближение [19], теория возмущений [20], разложение Борна-Майера [21, 22], модифицированный вариант среднего поля [11, 23]. Во всех этих теориях предполагается, что равновесная намагниченность магнитной коллоидной системы является функцией ланжевеновской намагниченности  и ее производных. В этом случае, магнитная восприимчивость концентрированного коллоида может быть представлена в виде ряда по степеням ланжевеновской восприимчивости :

 (1)

По утверждению авторов работы [?], в общем случае начальная восприимчивость системы сферических диполей определяется двумя независимыми безразмерными параметрами: объемной долей частиц  и параметром агрегирования  (- диаметр коллоидной частицы вместе с защитной оболочкой). При этом,  ими представляется в виде: , на основании чего делается ошибочный вывод, что параметр  и ланжевеновская восприимчивость  имеют одинаковый смысл отношения энергии диполь-дипольных взаимодействий к тепловой. По их мнению, разность лишь заключается в том, что в первом случае энергия взаимодействий вычисляется при минимальном расстоянии между центрами частиц, равном их диаметру, во втором – по среднему расстоянию, т.е. через числовую плотность . Далее утверждается, что при малых значениях  количество агрегатов в магнитной жидкости невелико, и они не влияют на намагниченность системы. В этом случае ланжевеновская восприимчивость оказывается единственным безразмерным параметром, определяющим степень влияния магнитодипольных взаимодействий на равновесную намагниченность системы, что и отражает формула (). Второе и третье слагаемые в этой формуле, по мнению авторов в этой формуле учитывают относительный вклад межчастичных взаимодействий в равновесную восприимчивость. Вместе с тем, следует заметить, что выражение для ланжевеновской магнитной восприимчивости получено в случае пренебрежения межчастичными взаимодействиями и на самом деле она может иметь только один смысл - отношения собственной (магнитостатической) энергии ансамбля однодоменных частиц к тепловой энергии. Действительно, магнитостатическая энергия сферической, однородно намагниченной частицы равна произведению ее магнитного момента на собственное размагничивающее поле, равное - , где - размагничивающий фактор сферической частицы. Таким образом, по абсолютной величине магнитостатическая энергия  сферической частицы равна . Так как =, то , и с учетом этого нетрудно получить

,

где  - объемная концентрация магнитной фазы.

Следует отметить, что, тем не менее, в современных аналитических моделях, описывающих свойства дипольных систем с учетом магнитодипольных и стерических взаимодействий в качестве определяющих параметров достаточно часто используют  и . Представляя коллоидные частицы твердыми или “мягкими” сферическими диполями энергию их магнитодипольного взаимодействия определяют выражением

,

где  - единичный вектор вдоль магнитного момента частицы,  - радиус-вектор, соединяющий центры частиц, отнесенный к диаметру частицы,  определяется выражением, аналогичным использованному в [], т.е. , за исключением того, что  в последнем выражении является диаметром равномерно намагниченной сферы, а не диаметром сферической частицы вместе с защитной оболочкой. Выражение для восприимчивости ищут в виде ряда по степеням и  или  и , используя различные приемы для отыскания коэффициентов при соответствующих членах разложения. В работах Хуке и Люке [21,22] представлено разложение намагниченности по параметру . Выражение для магнитной восприимчивости, согласно полученным ими результатов может быть представлено в виде

. (2)

Проведенные расчеты коэффициента , учитывающего парные взаимодействия и образование агрегатов из двух частиц дали следующее выражение:

Сравнение (1) и (2) показывает их различие, по крайней мере в пределе малых концентраций выражение (2) не переходит в уравнение (1).

В работах Каликманова [24,25] была предпринята попытка уточнения коэффициента перед третьим слагаемым в правой части (1) в случае магнитной жидкости с высокой концентрацией магнитной фазы. В работе [], результат, полученный Каликмановым с целью сравнения с (1) был представлен в виде

 (3)

,

В пределе малых концентраций множитель  стремится к единице, и уравнение (3) переходит в (1). Поправка на высокую плотность оказывается существенной для высококонцентрированных жидкостей, например для предельно концентрированных коллоидов коэффициент увеличивается почти на порядок.

Ивановым А.О. и Кузнецовой О.Б. получено уточненное выражение для восприимчивости [], сходное с формулой (1), но содержащее в правой части слагаемые порядка  и  :

.

Пшеничниковым А.Ф. и Лебедевым А.В. введены поправки в разложение (1) (исскуственным образом) на агрегирование частиц  и высокую плотность коллоидных частиц . В результате ими предложено выражение для магнитной восприимчивости в виде:

Сравнение формул, отражающих рассмотренные модели с экспериментальными данными проводилось в []. Анализ результатов этой работы позволяет сделать вывод о необходимости осторожности использования предложенных разложений, так как каждое из них удовлетворительно согласуется с результатами экспериментов только в определенных интервалах температур и концентраций дисперсной фазы. Следует также заметить, что все обсужденные модели разработаны для монодисперсной системы, в случае же полидисперсной среды, их применение становится затруднительным. Это связано с тем, что в этом случае определение параметра  становится некорректным, кроме того, представление ланжевеновской восприимчивости в виде , являющееся формальным даже в случае монодисперсной среды (квадрат момента частицы заменяется произведением равных моментов двух разных частиц) становится невозможным, так как моменты этих частиц начинают различаться. Очевидно, что все эти затруднения могут быть преодолены в случае отыскания разложения для равновесной намагниченности в виде ряда по параметрам, определяющим магнитостатическую энергию частицы и объемную концентрацию магнитной фазы. Учет взаимодействия частиц в этом случае может быть охарактеризован изменением магнитостатической энергии частицы за счет полей соседних частиц, а при полидисперсности системы никаких сложностей с введением средней магнитостатической энергии частицы не возникает.


Глава 2. Структурная организация магнитных жидкостей и обусловленные ею электро- и магнитооптические эффекты

§1. Структурные образования в магнитных жидкостях

Наличие вокруг дисперсных частиц защитных оболочек, препятствующих необратимой коагуляции не исключает возможности объединения частиц в агрегаты, когда расстояние между ними соответствует второму минимуму энергии взаимодействия при сохранении барьера отталкивания, а также в случае малой глубины первого минимума. Действительно, микроскопические наблюдения показывают наличие даже в наиболее устойчивых к агрегированию МЖ типа магнетит в керосине с олеиновой кислотой структурных образований из исперсных частиц.

Де Жен и Пинкус [33 МД] рассмотрели коллоид, состоящий из идентичных ферромагнитных частиц, взвешенных в пассивной по отношению к магнитному полю жидкости. Для характеристики дипольного взаимодействия, приводящего к агрегированию использован параметр, называемый константой спаривания . Было предположено, что при условии  происходит агрегирование с образованием для верхнего предела плотности решетки антиферромагнитного типа. Теоретические разработки условия появления агрегатов в магнитных коллоидах также проводились в ряде других работ (например, в [21,34,35]), экспериментальное исследование этого явления предпринималось в работах [37,33, 38, 39,40,41,42,43,44,45] и др. Развитие экспериментальных работ в области физики магнитных коллоидов привело к появлению представления об агрегировании в МЖ как возникновении гетерофазных включений. По-видимому, впервые оно было сформулировано В.В.Чекановым [75] , где образование агрегатов рассматривалось им как появление новой фазы из раствора, близкого к насыщению. В [76] возникновение агрегатов, интерпретированное как фазовый переход в магнитных коллоидах, рассмотрено на основе общих представлений гетерогенных систем. Из условия равновесия свободных частиц с агрегатами получен аналог уравнения Клапейрона-Клаузиса – зависимость напряженности магнитного поля, при которой начинается фазовый переход, от температуры при постоянных давлении и концентрации:

 , ( )

где - теплота растворения, отнесенная к одной частице,  -магнитный момент частицы.

Термодинамическая модель магнитной жидкости, показывающая, что при определенных значениях концентрации, температуры и напряженности магнитного поля появляется возможность расслоения МЖ на высоко- и слабоконцентрированные фазы, построена в работах А.О. Цеберса [77,78].

При этом, как, по-видимому, было впервые указано в [65], агрегаты могут быть разделены на два типа микрокапельные, имеющие упругую оболочку, и квазитвердые, иногда хлопьевидные, реже - напоминающие кристаллические образования.

§2. Магнитная жидкость с микрокапельной структурой

Наиболее распространенными в жидкостях на основе керосина являются микрокапельные агрегаты. По-видимому, образование микрокапельной структуры является уникальным процессом, характерным только для дисперсных систем с магни-тодипольными частицами. Попытка теоретического обоснования физического механизма этого процесса неоднократно предпринималась в ряде работ [38,76,82,138,139], среди которых следует отметить работу А.О. Цеберса [138], где в основу положено явление вытеснительной флокуляции. Вытеснительная флокуляция может иметь место, если дисперсные частицы находятся в растворе достаточно крупных молекул [140]. В этом случае, при сближении дисперсных частиц до расстояний, меньших диаметра растворенных клубков, последние не в состоянии заполнить зазор между частицами, который играет роль своеобразной мембраны, и осмотическое давление раствора создает силу, приводящую к притяжению частиц. При этом, при наличии магнитных межчастичных взаимодействий значение критической концентрации растворенных клубков, соответствующее началу агрегирования уменьшается. Действительно, возникновение микрокпельных агрегатов наблюдается в магнитных жидкостях при разбавлении их чистым ПАВ или его раствором в дисперсионной среде [134] . Вместе с тем, является установленным фактом и возможность возникновения микрокапельной структуры при разбавлении МЖ чистым растворителем. По-видимому, причиной этого являются процессы мицелообразования ПАВ в результате добавления керосина в магнитную жидкость. Как было указано в Гл. 1, именно с возникновением микрокапельной структуры при изменении концентрации магнитной жидкости на основе керосина путем ее последовательного разбавления связаны особенности концентрационной зависимости ее магнитной восприимчивости. В этом случае возникновение микрокапель было рассмотрено в рамках фазового перехода, так как налицо возникновение новой, более концентрированной фазы с наличием межфазной поверхности. Следует отметить, что концентрация частиц в микрокаплях может быть значительно выше, чем в омывающей их среде, а магнитная проницаемость микрокапель достигает нескольких десятков единиц.

Для исследования особенностей физических свойств магнитных жидкостей, обусловленных наличием микрокапельных агрегатов в [141] была разработана методика получения в МЖ на основе керосина хорошо развитой микрокапельной структуры. Это достигалось путем смешивания МЖ с минеральным маслом при различном соотношении их объемов. Смесь подогревалась до температуры 315 - 320 К и перемешивалась в течении 15-20 минут с помощью электромеханической мешалки. В результате этого была получена жидкость, содержащая множество мелких (2-7 мкм) капельных агрегатов, имеющих более высокое содержание магнетита, чем омывающая их среда. Такая магнитная жидкость может быть идентифицирована как магнитная эмульсия, уникальность которой состоит в том, что и эмульгированные капли и омывающая их среда одинаковы по природе и отличаются лишь плотностью. С другой стороны, достаточно высокое объемное содержание микрокапельных агрегатов в полученной таким способом среде приводит к особенностям оптических и магнитных свойств, обусловленных поведением микрокапель в магнитных и электрических полях. Подобные эффекты в той или иной мере могут наблюдаться и в магнитных жидкостях, в которых возможно самопроизвольное возникновение микрокапель под воздействием различных факторов.

2.1 Оптические эффекты в магнитной жидкости с микрокапельной структурой в сдвиговом течении

Деформация микрокапельных агрегатов в магнитном и электрическом полях, а также под действием сдвиговых напряжений приводит к структурной анизотропии в магнитной жидкости. Вследствие соизмеримости поперечных размеров вытянутых агрегатов с длиной световой волны, они становятся причиной дифракционного рассеяния света. Наблюдающееся в этом случае рассеяние света является анизотропным и может быть использовано для изучения характера структуры МЖ и динамики ее изменения [69]. Наличие распределения микрокапель по размерам и отсутствие трансляционного упорядочения вытянутых агрегатов определяет вид индикатрисы рассеяния, характерный для нерегулярной структуры [142]. Анализ экспериментально полученных индикатрис светорассеяния позволяет определить наиболее вероятную толщину агрегатов и ее зависимость от внешних воздействий.

Подобный эффект был обнаружен и при наличии в магнитной жидкости с микрокапельной структурой сдвигового течения [143]. При этом, при дополнительном воздействии магнитного поля, возможно возникновение более упорядоченной структурной решетки, дающей в проходящем свете четкую дифракционную картину. Изучение формирования структурной решетки при таких условиях проводилось с помощью исследования дифракционного светорассеяния, для чего использовалась установка, приведенная на рисунке 19).

Рисунок 19. Схема вибрационного магнетометра для исследования магнитных свойств магнитных жидкостей в сильных магнитных полях (H = 10ч800 кА/м); 1 -контейнер с магнитной жидкостью, 2 - измерительные катушки, 3 - электромагнит ФЛ-1, 4 - вибратор (остальные пояснения в тексте).

Сдвиговое течение создавалось между двумя прозрачными дисками с тонким слоем (30-40 мкм) МЖ между ними. Луч гелий-неонового лазера направлен перпендикулярно дискам с смещением от их центров на расстояние 0,5 см. При вращении одного из дисков в областях, эксцентрично расположенных относительно оси вращения, в плоскости, перпендикулярной оси, течение является куэтовским, а в плоскости, проходящей через нее, близким к куэтовскому (при малых толщинах образцов). Этим составляющим скорости соответствуют две компоненты градиента скорости с преобладанием второй. Результирующий градиент, направленный под непрямым углом к плоскости диска, обеспечивает деформацию сдвига, имеющую вязкостную природу [144]. Под действием сдвигового напряжения происходит деформация капель, величина которой определяется значением скорости сдвига, межфазного натяжения и вязкости среды [144,145]. Как показано в работе [144] в этом случае капля принимает форму вытянутого сфероида, соотношение осей которого удовлетворяет уравнению:

                              (4.1)

где а - длина главной оси, b - длина короткой оси, hф - вязкость дисперсной фазы, hс - вязкость дисперсионной среды, G -скорость сдвига, s0- коэффициент межфазного натяжения.

В результате деформации капель структура образца становится анизотропной в любой небольшой области, смещенной относительно оси вращения. Это приводит к изменению характера рассеяния света. При отсутствии вращения на экране, перпендикулярном лучу, наблюдается свечение, имеющее вид ореола, обусловленное дифракционным рассеянием света на полидисперсных каплях, хаотически разбросанных по образцу. При наличии сдвига ореол преобразуется в размытую полосу, простирающуюся в стороны от луча, перпендикулярно большим полуосям деформированных капель. В этом случае система деформированных потоком агрегатов аналогична нерегулярной дифракционной решетке, параметры которой определяет индикатриса рассеяния, т.е. зависимость интенсивности рассеянного света I от угла рассеяния q. На рисунке 20 представлены индикатрисы рассеяния, полученные при различных скоростях сдвига, анализ которых позволяет сделать вывод о характере процесса формирования анизотропной структуры в сдвиговом течении.


Рисунок 20. Индикатрисы рассеяния, полученные при различных значениях скорости сдвига; 1 - 66, 2 -53, 3 - 43, 4 - 36, 5 - 31, 6-27 с-1.

Следуя [69] где, как уже указывалось, изучались процессы деформации микрокапельных агрегатов в магнитном поле, предположим, что в нашем случае толщина агрегатов также может удовлетворять статистическому распределению Лоренца:

                                 (4.2)

а индикатриса рассеяния имеет вид:

     (4.3)

где в0 - наиболее вероятная толщина агрегатов, s*- полуширина кривой распределения на половине высоты, n - показатель преломления жидкости,  , l - длина волны света в вакууме. Использование формулы (4.3) позволяет рассчитать структурные параметры деформированных агрегатов по экспериментально найденной зависимости I (q), а анализ семейства таких кривых, соответствуюших различным скоростям сдвига, позволяет установить зависимость наиболее вероятной толщины агрегата от величины скорости сдвига.

Страницы: 1, 2, 3


© 2010 Рефераты