Рефераты

Научная работа: Орская ТЭЦ

6.3. Уплотнение вала ротора и схема маслоснабжения уплотнений генераторов.

В турбогенераторах с водородным охлаждением предотвращение утечки водорода в месте выхода вала ротора осуществляется посредством специальных уплотняющих подшипников, размещаемых между торцевыми щитами генератора и опорными подшипниками ротора генератора.

Принцип действия уплотнения вала заключается в запирании водорода непрерывным встречным потоком масла, подаваемым в узкий зазор между валом ротора и вкладышем уплотнения под давлением, превышающим давление водорода.

Значение перепада давлений масло-водород находится в пределах 0,04-0,06 Мпа (0,4-0,6 кгс/см2).

Номинальное значение перепада уточняется при наладке системы маслоснабжения и на работающем генераторе поддерживается неизменным специальной регулирующей аппаратурой. Уменьшение перепада давления уплотняющего масла над давлением водорода до 0,03 МПа (0,3 кгс/см2) может привести к утечкам водорода через уплотняющие подшипники, увеличение этого перепада до 0,08-0,1 МПа (0,8-1,0 кгс/см2) также может привести к утечкам водорода, в первом случае – за счет незначительного превышения давления масла над давлением водорода, а во втором – в следствии большого расхода масла в сторону воздуха, больших скоростей масла и его эжектирующей способности.

6.4. Уплотняющие подшипники генераторов установленных в КТЦ выполнены торцевого типа с прижимом вкладышей к гребню вала стальными пружинами.

Уплотнение торцевого типа состоит из вкладыша и корпуса, крепящегося к торцевому щиту. Запирающий масляный слой создается между торцевой поверхностью вкладыша и боковой поверхностью упорного диска вала. Усилие от давления масла в масляном слое, возрастающее по мере увеличения частоты вращения за счет клиновой разделки рабочей поверхности вкладыша, старается отжать последний от вала и разорвать масляную пленку. Для предотвращения этого явления искусственно создается усилие прижатия, которое уравновешивает усилие отжатия вкладыша от упорного диска.

Прижим вкладыша к валу создается посредством совместного действия специальных пружин и давления водорода.

Рабочая поверхность вкладыша залита баббитом. Имеющим специальную разделку, состоящую из чередующихся в тангенциальном направлении клиновых и плоских площадок, разделенных радиальными канавками, кольцевой канавкой, наружного и внутреннего кольцевых поясков. Клиновые площадки при номинальной частоте вращения ротора являются основным несущим элементом, обеспечивающим образование сплошной масляной пленки толщиной 0,08-0,15 мм между упорным диском вала и вкладышем, смазывающей рабочие поверхности и отводящей потери трения.

Через эти площадки и наружный сплошной поясок проходит основной поток масла на сторону воздуха, достигающий 95 % общего расхода масла, поступающего в уплотнения. Плоские площадки контактируют с поверхностью упорного диска при отсутствии сплошной масляной пленки, т.е. при низких частотах вращения и работе от ВПУ. Между несущей поверхностью и внутренним кольцевым пояском располагается кольцевая прерывистая канавка, в которую подается уплотняющее масло под давлением, превосходящим давление водорода. Эта канавка вместе с внутренним пояском обеспечивает герметизацию газового объема генератора и незначительный расход масла в сторону водорода. Газовый объем генератора отделен от камеры слива масла в сторону водорода маслоуловителями лабиринтного типа. Слив масла прошедшего на строну воздуха осуществляется в картер опорного подшипника. Вкладыш удерживается от вращения посредством шпоночного узла. Масляный режим уплотняющих подшипников контролируется количеством сливаемого масла в сторону водорода. При нормальной работе подшипника струя сливаемого масла имеет диаметр 3-6 мм. При избыточном количестве масла на подшипнике струя сливаемого масла в сторону водорода имеет диаметр более 6 мм, при недостатке масла на подшипник струя имеет диаметр менее 3 мм или прекращается вовсе.

При пусках и остановах турбоагрегата, роста или снижения нагрузки происходит тепловое перемещение валопровода, а следовательно меняется положение упорных дисков относительно корпусов уплотнений вала. При отходе упорного диска от баббитовой заливки, увеличивается минимальная толщина масляного слоя и снижается усилие в масляном клине. Усилие прижатия вкладыша становится выше отжимающего усилия в масляной пленке. Когда разность усилий превзойдет усилия трения вкладыша в корпусе, вкладыш сдвинется и последует за валом. При сближении упорного диска с вкладышем толщина масляного слоя уменьшится и возрастет усилие в масляном клине.

Появляется неуравновешенная разность усилий, которая отжимает вкладыш от вала, преодолевая силы трения.

6.5. В режимах работы с пониженной частотой вращения (пуск, останов турбоагрегата, вращение от ВПУ) гидродинамическое усилие уплотняющего масла значительно снижается и возникает полусухое трение между вкладышем и диском. В том режиме усилие прижимающее вкладыш к диску воспринимается меньшей площадью баббитовой поверхности – только плоскими площадками. Если удельное давление на баббит в режиме полусухого трения велико, то неизбежен ускоренный износ баббита, который накапливается при повторении подобных режимов и особенно при продолжительном вращении от ВПУ.

В результате износа уменьшаются несущие клиновые площадки, снижается гидродинамическое усилие и несущая способность вкладыша.

Уравновешивания усилия прижимающего вкладыша к диску при номинальной частоте вращения достигается при уменьшенной толщине масляного слоя, что ведет к повышению температуры вкладыша в процессе эксплуатации. При ускоренном износе баббита толщина масляного слоя может снизиться на столько, что дальнейшее повышение температуры баббита может привести к его размягчению в направлении вращения вала и перекрытию маслоподающих отверстий во вкладыше.

Существенным недостатком уплотнений вала генераторов турбин ст. №№ 9,10,11,12 является их повышенная чувствительность к нарушению их маслоснабжения. Кратковременное снижение давления масла (перепад давлений масло-водород) при нарушении работы системы маслоснабжения для конструкции торцевых уплотнений генераторов турбин представляют большую опасность, как из-за возможного пропуска водорода в картере, так и потому, что несущая способность вкладышей резко снижается, нарушается равновесие усилий, действующих на вкладыши, возникает режим полусухого трения.

6.6. При недостаточной подаче масла на уплотняющий подшипник повышается температура вкладыша и сливаемого с подшипника масла, при увеличенной подаче масла – температура вкладыша и сливаемого масла понижается.

Температура вкладышей уплотнений вала является наиболее представительным параметром, характеризующим их состояние. Выплавливание баббита сегментов упорных подшипников происходит при температуре колодок 130 оС. Учитывая температурный запас и способ контроля температуры нагрева баббита в уплотнениях торцевого типа, температура баббита торцевых уплотнений не должна превышает 80оС.

Масло, подаваемое на уплотняющие подшипники, должно иметь температуру 40-45оС. Температура масла на выходе из уплотнений не должна превышать 65оС.

Разность температур входящего и выходящего масла не должна превышать 30оС.

6.7. В качестве основного источника маслоснабжения уплотнений вала используется инжектор, который считается наиболее простым и надежным устройством из-за отсутствия в нем вращающихся и трущихся элементов.

Напорным масла инжектора является масло из системы регулирования турбины, масло для уплотняющих подшипников генераторов берется из системы смазки турбины, после маслоохладителей и при помощи инжектора подается на уплотняющие подшипники. Подаваемое масло на уплотнения генератора должно иметь давление после инжектора не менее 3 кгс/см2. Помимо инжектора установлены два центробежных насоса уплотнений в качестве резерва. Один из которых резервный, с двигателем переменного тока, а другой – аварийный, с двигателем постоянного тока, подающее масло на уплотнения из чистого отсека главного масляного бака турбины (ГМБ). Нормально в работе находится инжектор, электронасосы находятся в резерве на блокировке по понижению давления масла на уплотнение.

Регулирование подачи масла на уплотняющие подшипники генераторов производится дифференцированными регуляторами перепада давления (РПД) типа:

на генераторе - № 9,10, 11 – тип ДРДМ-30М – уплотняющее масло;

на генераторе - № 12 – тип ДРДМ-12М – уплотняющее масло.

Регуляторы давления масла ДРДМ-30М, ДРДМ-12М обеспечивают постоянный перепад давления между давлением газа в корпусе генератора и давлением масла перед подшипниками как при изменении давления масла, так и при изменении оборотов генератора.

Из напорного коллектора (после инжектора или НУГ) масло как правило поступает в маслоохладитель (МО) (при нормальной работе), в котором масло охлаждается до 40-42оС, а затем в масляные фильтры (МФ), один из которых- в работе, другой- в резерве.

После МФ масло подается на вход РПД. Давление мала перед РПД должно быть в пределах 8-10 кгс/см2. После РПД масло подается в демпферный бак и под давлением выше давления водорода поступает на оба уплотнения вала.

Схема маслоснабжения уплотнений связана со сливным трубопроводом масла с подшипников турбины и поэтому всегда находится в заполненном состоянии.

При отказе дифференцированного регулятора масло в (ДБ) или подшипники может быть подано через задвижку УМ-20.

Непосредственно перед подшипниками установлены запорные вентили, которые нормально полностью открыты и служат для корректировки расхода масла на подшипник в случае ненормальной работы.

Работа маслоснабжения уплотняющих подшипников генераторов с отключенным ДБ ЗАПРЕЩАЕТСЯ.

Работа уплотнений помимо ДБ предусматривается как временная мера, на случай устранения неисправностей в системе маслоснабжения уплотнений.

Пройдя уплотнения вала большая часть масла сливается в сторону воздуха – в картеры опорных подшипников генераторов и лишь незначительная часть в сторону водорода, в сливную водородную камеру.

Из водородной камеры во избежание и попадания водорода в ГМБ турбины, масло сливается в схему маслоснабжения через водородоотделительный бачок, U-образный гидрозатвор. U-образные гидрозатворы установлены на всех генераторах , обеспечивающих работу генератора с давлением газа в корпусе до 0,5 кгс/см2.

Для возможности работы генераторов с давлением газа выше 0,5 кгс/см2 на генераторах №№ 9,10,11,12 установлены поплавковые механические гидрозатворы типа 3Г-30. Поплавковый гидрозатвор включается в схему параллельно U-образному гидрозатвору.

Нормально поплавковый гидрозатвор находится постоянно в работе. При переводе генератора в режим работы с давлением газа в корпусе генератора выше 0,5 кгс/см2, необходимо предварительно включать U-образный гидрозатвор и проверить нормальную работу поплавкового гидрозатвора.


7. ГЛАВНЫЙ ЩИТ УПРАВЛЕНИЯ

Главный щит управления - мозг станции, с пульта которого координируется работа всего оборудования станции.

Главный щит управления на ТЭЦ – 1 представляет собой приборный щит, играющий роль главного звена в системах автоматизации технологических процессов. На главном щите управления располагаются электрические, пневматические, и гидравлические приборы и аппараты контроля, управления, регулирования и питания.

Пульты, шкафы, щиты средств автоматизации производственных процессов предназначены для размещения на них средств контроля, и управления технологическими процессами, контрольно-измерительными приборов, сигнальных устройств, аппаратуры управления, автоматического регулирования, защиты, блокировки, линии связи между ними.

Главный пульт управления выполняет следующие основные функции:

·  анализ режимов технологического оборудования;

·  контроль технологических параметров;

·  управление (открытие, закрытие, стоп) и контроль станционных и агрегатных задвижек;

·  контроль режимов перекачки, готовности магистральных и подпорных насосных агрегатов;

·  обработка предельных значений параметров по агрегату (котел и турбина).

Щиты и пульты управления на ТЭЦ применяются с целью:

·  расширения функциональных возможностей автоматизации по сравнению с существующими системами;

·  обеспечения учета потребления и выработки энергоресурсов: расхода газа (жидкого топлива), расхода воды, пара, тепловой энергии на отопление и горячее водоснабжение, расхода конденсата с производства, расхода газа по котлам.

Щиты и пульты управления (стативы) представляют собой металлический каркас из перфорированного швеллера с технологической обвязкой. Окраска металлоконструкций производится эпоксидно-порошковыми красками методом электростатического напыления.

Стойки укомплектовываются измерительными приборами (датчиками давления, перепада давления, температуры, вибрации, силы тока, уровня) и сигнализирующими приборами релейного типа (датчиками-реле напора, сигнализирующими манометрами и реле давления, сигнализаторами уровня).

Щиты и пульты управления изготавливаются в виде открытых стоек, как для индивидуального, так и для полносборного монтажа с общей обвязкой.

Возможно размещение стоек в блочно-комплектных устройствах (блок-боксах) для систем автоматизации, контроля и управления.

Пульты, шкафы, щиты средств автоматизации производственных процессов устанавливаются в производственных помещениях и специальных щитовых помещениях: операторских, диспетчерских, и т.д.


8. ПОКАЗАТЕЛИ ТЕПЛОВОЙ ЭКОНОМИЧНОСТИ ТЭЦ

Все основные тепловые показатели ТЭЦ можно приблизительно рассчитывать по ниже приведенным формулам:

1. Расход условного топлива:

где  - расход природного газа;

 - расход мазута;

 - низшая теплота сгорания природного газа;

 - низшая теплота сгорания мазута.

2. Удельный расход условного топлива на отпуск тепла:

где  - отпуск тепла потребителям

3. КПД ТЭЦ:

где - отпуск электроэнергии

4. КПД брутто котлоагрегата:

где  - выработка тепла;

 - расход перегретого пара;

 - расход пара на непрерывную продувку;

 - соответственно, энтальпия перегретого пара, пара на продувку и энтальпия питательной воды.


Усредненные расходы топлива на всех котлах ТЭЦ – 1 сведены в следующую таблицу:

Тип котла

Кол-во горелок

Расход топлива на 1 горелку

Расход топлива на весь котел

газ,  

мазут, 

газ,

мазут,

1,2,3 ПТВМ-180 20 1265 - 25300 -
4 КВГМ-180 6 3796 - 22776 -
9 БКЗ-210 8 2000 - 16000 -
10 ТГМ-84 18 1765 1,7 31770 30,6
11 ТГМ-84 18 1765 1,7 31770 30,6
12 ТГМ-84 18 1900 1,7 34200 30,6
13 ТГМ-84Б 6 5000 5,0 30000 30,0

9. ОРГАНИЗАЦИЯ ЭКСПЛУАТАЦИИ ОТДЕЛЬНЫХ ЦЕХОВ

9.1. Компрессорный цех

На территории ОТЭЦ-1 находится трубопровод сжатого воздуха, используемый для собственных нужд предприятия (снабжение сжатым воздухом различного пневматического оборудования). Данный трубопровод подключен к компрессору ВП - 20/8М производительностью 20 м/мин и давлением 8 атм. Компрессор находится в компрессорном цехе, располагаемом непосредственно возле КТЦ II очереди. Компрессор представляет собой двухступенчатую крейцкопфну, машину двойного действия, с угловым расположением цилиндра. Компрессор снабжен автоматической аварийной защитой. Компрессор приводится в действие от синхронного эл. двигателя, типа ДСК-12-24-12, мощностью -125 квт. Напряжение – 380 В. Число оборотов- 500 об/мин.

9.2. Система откачки сточных вод с пром. площадки ОТЭЦ – 1 на золоотвал №2

При эксплуатации системы откачки сточных вод с пром. площадки ОТЭЦ-1 на золоотвал № 2 должны быть обеспечены:

1. Надежность оборудования, устройств и сооружений внутренней и внешней системы откачки сточных вод с пром. площадки ОТЭЦ-1 на золоотвал № 2.

2. Рациональное использование емкости золоотвала.

3. Предотвращение загрязнений и сточными водами воздушного и водного бассейна, а также окружающей территории.

4. Своевременное наращивание дамбы золоотвала.

5. Плотность трактов и оборудования, исправность облицовки и перекрытий каналов, золопроводов, отключающих устройств.

Эксплуатация системы откачки сточных вод с пром. площадки ОТЭЦ-1 на золоотвал № 2 должна быть организована в режимах, обеспечивающих:

1. Оптимальные расходы воды и электроэнергии.

2. Исключение замораживания внешних водоводов, заиливание каналов и колодцев.

Оборудование багерной насосной № 1:

1. Багерные насосы ст. № 1; № 2; № 3.

Тип 12 Гр-8Т2.

Центробежный, одноступенчатый, консольный с двойным корпусом.

Подшипник радиально-опорный роликовый № 3631 – 1 шт. и подшипник упорный № 46234 -2 шт.

Смазка подшипников – масло «Индустриальное-45».

Вращение рабочего колеса по часовой стрелке, если смотреть на электродвигатель со стороны насоса.

Напор насоса – 70-79 м вод.ст.

Производительность – 1000-1500 м³/час

Электродвигатель асинхронный, тип А 13-46-6

Мощность – 630 квт

Число оборотов - 980 об/мин

Напряжение -3000 вольт

Перекачиваемая среда – сточные воды с очистных сооружений ТЭЦ и КТЦ.

Температура – не более50º С

2. Дренажные насосы ст. №№ 1; 2.

Тип 4НФУ

Центробежные, одноступенчатые, консольные

3. Дренажный насос ст. № 3

Тип 4К-8

Центробежный, одноступенчатый, консольный

Производительность – 360 м³/час

Напор – 6 м вод.ст.

4. Дренажный насос № 4

Тип К 100-65-200

Центробежный, одноступенчатый, консольный

Производительность – 100 м³/час

Напор – 50 м вод.ст.

Оборудование багерной насосной № 2

1. Багерные насосы ст. №№ 1; 2; 3 – первого подъема.

Багерные насосы ст. №№ 1А; 2А; 3А – второго подъема.

Тип ГРТ 1250/71

Центробежный, одноступенчатый, консольный с двойным корпусом.

Смазка подшипников – масло «Индустриальное-45».

Производительность – 1250 м³/час

Напор – 71 м вод.ст.

Электродвигатель асинхронный

Мощность – 630 квт

Число оборотов - 980 об/мин

Напряжение -6000 вольт

2. Сальниковые насосы (насосы уплотнения)

Служат для уплотнения сальников багерных насосов первого подъема №№ 1;2;3 установлены 2 шт.

Тип – ЦНС -105-98.

Производительность – 105 м³/час

Напор – 98 м вод.ст.

Для уплотнения сальников багерных насосов второго подъема №№ 1А;2А;3А установлены 2 шт.

Тип – ЦНС -105-196.

Производительность – 105 м³/час

Напор –196 м вод.ст.

Дренажные насосы предназначены для откачки воды из дренажного приямка.

Дренажный насос ст. № 1

Тип – ЦНС -3

Производительность –36,4 м³/час

Напор –15,9 м вод.ст.

Шламовый водоструйный насос № 2

Производительность – 30 м³/час

Напор –6 м вод.ст.

Дренажный насос ст. № 3 –водоструйный эжектор.

Оборудование насосной осветленной воды.

1. Насосы осветленной воды ст. №№ 1; 2; 3 предназначены для подачи осветленной воды на ТЭЦ, для повторного использования в системе гидрозолоудаления.

Тип насосов – 300Д90

Производительность – 900 м³/час

Напор –18 м вод.ст.

Электродвигатель асинхронный,тип А-272-6

 Мощность – 100 квт

2. Дренажные насосы №№ 1; 2.

Тип ВКС-5/24

Производительность – 8,5-18,4 м³/час

Напор – 10-20 м вод.ст.

Схема работы гидрозолоудаления багерной насосной № 1.

Гидросмесь из котельного отделения поступает в багерную по каналу, расположенному в сточном проходном тоннеле. Перед входом в багерную канал разделяется на два канала (к колодцам №№ 1; 2). Переключение на колодцы производится путем перевода поворотной шандоры.

Кроме того на каждом колодце имеется своя запорная шандора. За запорной шандорой поперек канала сделано углубление, являющееся предварительным железоуловителем.

После предварительного железоуловителя гидросмесь поступает в приемный колодец. Поперек приемного колодца установлена наклонная решетка с ячейками шириной 20 мм.

Приемный колодец соединяется с буферным колодцем амбразурой, расположенной на высоте 2300 мм от пола багерной.

Если в приемный колодец поступило больше смеси чем откачивается багерными насосами, то гидросмесь через амбразуру заполняет буферный колодец. При нормальной работе следует поддерживать уровень гидросмеси на 1,5- 2 м выше дна колодца.

Золопроводы и золоотвал № 2.

Золоотвал ТЭЦ является ответственным гидротехническим сооружением, аварии которого могут привести к тяжелым последствия не только для станции, но и для объектов народного хозяйства и населенных пунктов, расположенных вблизи золоотвала.

Золоотвал № 2 «новый» расположен к северу от ТЭЦ-1в урочище Казак-Чекан на расстоянии 9,5 км. Высота подачи воды -108 м над площадкой ТЭЦ. Емкость наполнения золоотвала 4 млн. м³.

В эксплуатации находится с 1983 года. Максимальная высота ограждающей дамбы 36 м.

Площадь золоотвала -42 га. Золоотвал овражного типа.

Гребень ограждающей дамбы на отметке 308,0 м. Ширина дамбы -10 м.

Для возможности аварийных сбросов воды при сильных наводнениях (паводках) предусмотрен аварийный водосброс.

Максимальный уровень воды золоотвала -295 см.

Аварийный сброс при уровне -298 см.

Для контроля за осадками и смещениями дамбы золоотвала установлена сеть поверхностных и глубинных реперов.

От багерной насосной № 2 до золоотвала № 2 проложено три золопровода диаметром 426 мм. Протяженность трассы – 6,5 км

От золоотвала № 2 до насосной осветленной воды проложен железобетонный канал, протяженностью 70 м.

Трубопровод осветленной воды Ø 530 мм от насосной осветленной воды до ТЭЦ протяженность трассы -10 км.


10. ХАРАКТЕРИСТИКА ИНФОРМАЦИОННОЙ СЕТИ ТЭЦ

Информационная опорная сеть ОТЭЦ – 1 строится на основе 7-ми подсистем:

·  первичные каналы сети связи;

·  узлы связи;

·  комплекс распределённого контроля и управления агрегатами и информационной сетью;

·  система архивирования информации и обеспечение бесперебойного питания;

·  информационные серверы коллективного пользования;

·  интеграция с российскими сетями;

·  универсальная система подключения абонентской компьютерной техники;

Первичные каналы связи строятся на основе одномодового оптоволоконного кабеля по топологии "звезда" с центром на стационарной АТС.

Система распределённого контроля и управления Информационной Опорной Сетью представляет собой программно-аппаратный комплекс с центром управления в здании АТС.

Для организации бесперебойного электропитания информационой сети используется распределённая система гарантированного электропитания.

Информационные серверы коллективного пользования - это специально организованные информационные ресурсы Опорной Сети, к которым обеспечен доступ абонентов с многоуровневой системой регистрации.

В качестве поставщика услуг Internet, обеспечивающего доступ к российским и мировым ресурсам используется АО "ВолгаТелеком" г. Орск.

Для организации связи между узлами телекоммуникационной распределённой сети связи используются современные оптические каналы связи, которые позволяют построить магистраль передачи данных на территории предприятия.

Служебный входной оптический шкаф расположен внутри здания АТС, в котором заканчиваются кабели, введённые в здание снаружи.

Для информационной опорной сети из общего магистрального многожильного оптического кабеля выделено два одномодовых волокна, один из которых служит для приёма информации, другой для передачи.

Для подключения активного оборудования информационной опорной сети используется оптический одномодовый кабель для внутренней прокладки, который приварен к магистральному кабелю и оканчивается стандартным ST коннектором. Кабель для внутренней проводки закреплён по всей длине стяжками к направляющим конструкциям и входит в распределительный шкаф. Для работоспособности сети в целом, необходимо, чтобы по всей длине оптического кабеля затухание было не более 0,4 Дб/км. Передача информации по одномодовым оптическим волокнам производится на длинах волн 1,3 и 1,55 мкм.

В качестве каналообразующего оборудования используются трансиверы фирмы Nbase NX300, которые передают оптический сигнал на расстояние до 10 км при затухании не более 0,4 Дб/км. Они предназначены для подключения оборудования Ethernet с разъёмом AUI в одномодовую волоконнооптическую линию связи. Протокол передачи информации - Ethernet CSMA-CD. Трансиверы имееют режим работы как полудуплекс (10Мб/сек), так и полный дуплекс (20Мб/сек).


11. Автоматизация

11. 1. Автоматическое управление тепловыми процессами

На такой электростанции, как ОТЭЦ – 1, входящей в энергосистему, должно осуществляться непрерывное круг­лосуточное регулирование текущего режима работы по частоте и перетокам активной мощности, обеспечивающее:

исполнение заданных диспетчерских графиков активной мощ­ности;

поддержание частоты в нормированных пределах;

поддержание перетоков активной мощности в допустимых диа­пазонах, исходя из условий обеспечения надежности функциониро­вания энергосистем, объединенных и единой энергосистем;

корректировку заданных диспетчерских графиков и режимов ра­боты, объединенных и единой энергосистем при изменении режим­ных условий.

Регулирование частоты и перетоков активной мощности должно осуществляться совместным действием систем первичного (общего и нормированного), вторичного и третичного регулирования.

Общее первичное регулирование частоты должно осуществляться всеми электростанциями путем изменения мощности под воздействием автоматических регуляторов частоты вращения роторов турбоагрегатов и производительности котлов, реакторов АЭС и т. п.

Нормированное первичное регулирование частоты должно обес­печиваться выделенными электростанциями. На ТЭЦ - 1 разме­щается необходимый первичный резерв. Параметры и диапазон нормированного первичного регулирования задаются со­ответствующими органами диспетчерского управления.

Вторичное регулирование (в целом по единой энергосистеме и в отдельных регионах) осуществляется с целью поддержания и восстановления плановых режимов по частоте и перетокам активной мощности.

Вторичное регулирование осуществляется оперативно либо автоматически (с использованием систем автоматического ре­гулирования частоты и перетоков мощности - АРЧМ) выделенными для этих целей электростанциями, на которых должен поддерживать­ся необходимый вторичный резерв активной мощности.

Использование системы автоматического управления и ре­жимов работы, препятствующих изменению мощности при измене­ниях частоты (ограничители мощности и регуляторы давления «до себя» на турбинах, режим скользящего давления при полностью от­крытых клапанах турбин, регуляторы мощности без частотной кор­рекции, отключение регуляторов мощности или устройств автома­тического регулирования производительности котельных установок) допускается только временно при неисправности основного оборудования или систем автоматического регулирования.

После изменения мощности, вызванного изменением частоты, персонал электростанции должен принять необходимые меры для выполнения требований участия в первичном регулировании часто­ты. При снижении частоты ниже установленных значений диспетчер единой энергосистемы России или изолированно работающей (аварийно отделившейся) объединенной энергосистемы (энергосистемы, энергорайона) должен ввести в действие имеющиеся резервы мощности.

Регулирование параметров тепловых сетей должно обеспечивать поддержание заданного давления и температуры теплоносителя в контрольных пунктах.

Допускается отклонение температуры теплоносителя от задан­ных значений при кратковременном (не более 3 ч) изменении утвер­жденного графика, если иное не предусмотрено договорными отно­шениями между энергосистемой и потребителями тепла.

Регулирование в тепловых сетях осуществляется автоматически или вручную путем воздействия на:

работу источников и потребителей тепла;

гидравлический режим тепловых сетей, в том числе изменением перетоков и режимов работы насосных станций и теплоприемников;

режим подпитки путем поддержания постоянной готовности водоподготовительных установок теплоисточников к покрытию изменяющихся расходов подпиточной воды.

11.2. Автоматические регуляторы тепловых процессов

Высокая экономичность при различных режимах поддерживается автоматическими регуляторами горения. Падение экономичности при переходе от экономической к максимально длительной нагрузке обычно не превышает 2—3%.

Котлы снабжены звуковыми сигнализаторами предельных уровней воды и автоматическими регуляторами питания котла.

На всех котлах ТЭЦ – 1 предусмотрены водосмотры, не смотря на наличие автоматических регуляторов питания и дистанционного привода для управления регулирующими питательными органами с рабочего места машиниста котла. Во всех других случаях наблюдение за уровнем воды и питанием котлов возлагается на машиниста котла.

Основные операции по управлению блоком осуществляются вычислительной подсистемой совместно с автоматическими регуляторами. В наиболее сложных режимах работы, таких как пуск, останов, аварийные режимы, вычислительная подсистема работает как советчик дежурного оператора. Роль и квалификация дежурного оператора с применением АСУ не только не снижается, но постоянно повышается. Операторами на ТЭЦ – 1 работают, как правило, техники, имеющие опыт работы и хорошо знающие не только основное и вспомогательное тепломеханическое оборудование, но и изучившие состав и принципы работы АСУ и умеющие контролировать работу системы автоматического управления.

Для обеспечения постоянного соответствия между выработкой пара, подачей топлива, воздуха и воды котельные агрегаты в 1999 – 2002 гг. были снабжены автоматическими регуляторами питания и горения – системой AMAX. Эта система учитывает способность самого котельного агрегата запасать (аккумулировать) некоторое количество тепла, которое может быть использовано в момент перехода от одной нагрузки к другой до того, как будет установлен соответствующий новой нагрузке режим питания и горения. Система AMAX позволяет регулировать питание котельного агрегата с рабочего места машиниста.

В котлах для всего возможного диапазона солесодержания питательной воды продувка осуществляется по качеству воды в солевых отсеках. Котлы № 10, 11 и 12 оснащены автоматическими регуляторами размера продувки по значению солесодержания котловой воды.

11.3. Автоматизация вспомогательного оборудования

Автоматизация системы защиты паровой турбины от падения давления масла:

Страницы: 1, 2, 3, 4, 5


© 2010 Рефераты