Рефераты

Курсовая работа: Тепловой расчет и эксергетический анализ парогенераторов

Т/А 1.0 1.2 1.4 1.6 1.8
0.0 35500,000 35500,000 35500,000 35500,000 35500,000
100.0 36728,386 36974,064 37219,741 37465,418 37711,096
200.0 37969,431 38463,317 38957,203 39451,089 39944,975
300.0 39232,768 39979,322 40725,876 41472,429 42218,983
400.0 40521,233 41525,479 42529,726 43533,972 44538,219
500.0 41841,720 43110,064 44378,408 45646,752 46915,096
600.0 43188,278 44725,934 46263,590 47801,246 49338,901
700.0 44564,215 46377,058 48189,901 50002,744 51815,587
Т/А 2.0 3.0 3.5 4.0 4.5
0.0 35500,000 35500,000 35500,000 35500,000 35500,000
100.0 37956,773 39185,159 39799,353 40413,546 41027,739
200.0 40438,862 42908,292 44143,008 45377,723 46612,439
300.0 42965,537 46698,305 48564,689 50431,073 52297,457
400.0 45542,465 50563,698 53074,314 55584,931 58095,547
500.0 48183,440 54525,159 57696,019 60866,879 64037,739
600.0 50876,557 58564,835 62408,975 66253,114 70097,253
700.0 53628,430 62692,645 67224,752 71756,859 76288,967
Т/А 5.0 5.5 6.0 6.5 7.0
0.0 35500,000 35500,000 35500,000 35500,000 35500,000
100.0 41641,932 42256,125 42870,319 43484,512 44098,705
200.0 47847,154 49081,870 50316,585 51551,300 52786,016
300.0 54163,841 56030,226 57896,610 59762,994 61629,378
400.0 60606,164 63116,780 65627,396 68138,013 70648,629
500.0 67208,599 70379,459 73550,319 76721,179 79892,039
600.0 73941,392 77785,532 81629,671 85473,810 89317,949
700.0 80821,074 85353,182 89885,289 94417,397 98949,504

Q=35500 кДж/м3

 

 

100

 

200

 

300

 

400

 

500

 

600

 

700

 

 

 

 

 

 

 

 

 

 
3.3 Тепловой баланс котельного агрегата

Расчет теплового баланса производится по уравнению

, (3.1)

где  - располагаемая или внесенная в котельный агрегат теплота;

 - низшая теплота сгорания топлива;

 - полезно использованная в котельном агрегате теплота;

 - потери теплоты с уходящими газами;

 - потери теплоты от химической неполноты сгорания топлива;

 - потери теплоты от механической неполноты сгорания топлива;

 - потери теплоты от наружного охлаждения;

 - потери с физическим теплом шлака;

Разделив обе части уравнения (3.1) на  и умножив на 100, получим уравнение теплового баланса

,

в котором величина

,

численно равна КПД котельного агрегата.

При сжигании газообразного топлива принимаем

;

;

Зная коэффициент αТ=1,20, выбираем горелку. Нам подходит камерная топка для сжигания жидких и газообразных топлив, с потерей теплоты от химической неполноты сгорания q3=2.8%.

По паропроизводительности котельного агрегата, которая равна D=21 т/ч, можно определить потери тепла на наружное охлаждение q5=1,28%.

кДж/нм3

кДж/нм3

кДж/нм3

кДж/нм3

кДж/нм3

кДж/нм3

Потери теплоты с уходящими газами определяем для двух случаев [1]

а. с воздухоподогревателем

,

%.

б. без воздухоподогревателя

,

%.

где  при t0=0°C;

КПД брутто котельного агрегата

а. с воздухоподогревателем

,

%.

б. без воздухоподогревателя


,

%.

Часовой расход натурального топлива

а. с воздухоподогревателем

,

м3/ч.

где D – паропроизводительность котельного агрегата, кг/ч;

 - энтальпия перегретого пара, определяется по таблицам термодинамических свойств воды и водяного пара по  и ;

 - энтальпия питательной воды при температуре  и ;

 - энтальпия котловой воды в котельном агрегате, определяется при температуре  и ;

б. без воздухоподогревателя [1]

,

 м3/ч.

Часовой расход условного топлива

а. с воздухоподогревателем


,

 м3/ч

б. без воздухоподогревателя

,

 м3/ч.

Диаграмма тепловых потоков

Рисунок 4 - Диаграмма тепловых потоков (кДж/м3) котельного агрегата


3.4 Упрощенный эксергетический баланс котельного агрегата

Эксергия топлива с достаточной для приближенных практических расчетов точностью может быть принята равной низшей теплоте сгорания топлива

,

кДж/м3.

Эксергия теплоты продуктов сгорания топлива, образующихся в топке котла а. с воздухоподогревателем

,

кДж/м3.

где  - температура окружающего воздуха, ;

 - калориметрическая температура горения, ;

б. без воздухоподогревателя

,

.

Потери при адиабатном горении (без учета потери эксергии за счет теплообмена топки с окружающей средой)

а. с воздухоподогревателем

,

 кДж/м3.

б. без воздухоподогревателя

,

 кДж/м3.

или в %

а. с воздухоподогревателем

,

%.

б. без воздухоподогревателя

,

%.

Определяем уменьшение эксергия продуктов сгорания за счет [1]

теплообмена в нагревательно – испарительной части котла.

а. с воздухоподогревателем

,

 кДж/м3.


б. без воздухоподогревателя

,

 кДж/м3.

Приращение эксергии в процессе превращения воды в перегретый пар

а. с воздухоподогревателем

,

 кДж/м3.

б. без воздухоподогревателя

 кДж/м3.

или в %

а. с воздухоподогревателем

,

.


б. без воздухоподогревателя

,

.

где  - удельная энтропия перегретого пара и питательной воды, определяются по таблицам термодинамических свойств воды и водяного пара

Потеря эксергии от теплообмена по водопаровому тракту

а. с воздухоподогревателем

,

 кДж/м3.

б. без воздухоподогревателя

,

 кДж/м3.

или в %

а. с воздухоподогревателем

,

.

б. без воздухоподогревателя


,

.

Уменьшение эксергии продуктов сгорания за счет теплообмена в воздухоподогревателе

,

 кДж/м3.

Увеличение эксергии воздуха в воздухоподогревателе

,

 кДж/м3.

Потеря эксергии за счет теплообмена в воздухоподогревателе

,

 кДж/м3.

или в %

,

.


Составим эксергетический баланс котельного агрегата и определим эксергию уходящих газов

а. с воздухоподогревателем

,

Отсюда

 кДж/м3.

б. без воздухоподогревателя [1]

,

Отсюда

,

 кДж/м3.

или в %

а. с воздухоподогревателем

,

.

б. без воздухоподогревателя

,

.

Определим среднетермодинамическую температуру при теплоподводе

,

.

Эксергетический КПД котельного агрегата, оценим через среднетермодинамическую температуру при тепловоде

а. с воздухоподогревателем

,

.

б. без воздухоподогревателя

,

.


Диаграмма потоков эксергии котельного агрегата

Рис. 5. Диаграмма Грассмана – Шаргута для эксергетического баланса котельного агрегата


4. Тепловой расчет котла – утилизатора

4.1 Расход газов через котел – утилизатор

,

 кДж/м3.

где  - объем газов;

 - часовой расход топлива без воздухоподогревателя;

По расходу газов через котел – утилизатор выбираем по каталогу его тип – КУ-40.

; ; ;

где  - наружный диаметр дымогарных труб;

 - внутренний диаметр дымогарных труб;

 - число дымогарных труб;

Определяем среднюю температуру продуктов сгорания в котле – утилизаторе

,

°С.

Выписываем теплофизические свойства продуктов сгорания при

; ;;

Вычисляем площадь поперечного (“живого”) сечения дымогарных труб


,

.

Определяем скорость газов в дымогарных трубах

,

м/с.

Условие выполняется, так как рекомендуемая скорость газов от  до  .

По скорости газов в дымогарных трубах выбираем котел утилизатор. В данном случае нам подходит 2 котла - утилизатора КУ-40.

4.2 Расчет поверхности теплообмена котла – утилизатора

Коэффициент теплоотдачи газов к стенкам дымогарных труб.

,

Вт/(м2*К).

где  и  - поправочные коэффициенты; [1]

 - при охлаждении;

;

 при ;

 - условие выполняется.

Коэффициент теплопередачи от газов к воде через дымогарные трубы испарительной части котла – утилизатора

,

.

где  - коэффициент загрязнения поверхности нагрева;

Теплота, отданная газами в котле – утилизаторе

,

кДж/с.

Выписываем из технической характеристики котла – утилизатора параметры получаемого пара (перегретого), питательной воды и давление в котле утилизаторе ; ; ;

где  - температура перегретого пара;

 - температура питательной воды;

 - давление в котле – утилизаторе;

Из таблиц термодинамических свойств воды и водяного пара определяем параметры пара при  и ; и питательной воды при  и ;

, , hПП=2942,8

;  hПВ=210,2

Паропроизводительность котла – утилизатора при 5% потерях теплоты в окружающую среду

а. в случае получения перегретого пара

,

кг/с.

Температура газов на входе в нагревательный участок  определяется из теплового баланса последнего

,

Отсюда

,

°С.

где  - КПД котла – утилизатора, ;

 - теплоемкость воды, равная ;

Температура газов на выходе из участка перегрева  определяется по уравнению теплового баланса участка (при получении перегретого пара)

,

Отсюда

,


°С.

Средний температурный напор

а. нагревательного участка

,

°С.

б. испарительного участка

,

°С.

в. участка перегрева [1]

,

°С.

Поверхность нагрева котла – утилизатора

а. нагревательного участка

,

м2.

б. испарительного участка

,

м2.

где  - теплота парообразования, определяется по таблицам термодинамических свойств воды и водяного пара в состоянии насыщения пара при ;

в. участка перегрева

,

м2.

Общая поверхность нагрева котла – утилизатора

,

м2.

Длина труб


,

м.

где  - число котлов – утилизаторов;

Строим график изменения температур вдоль поверхности нагрева котла – утилизатора

4.3 Термодинамическая эффективность работы котла – утилизатора

Уменьшение эксергии продуктов сгорания в котле – утилизаторе [1]

,

кДж/с.

Приращение эксергии пара, образующегося в котле – утилизаторе

а. в случае получения перегретого пара

,

кДж/с.

Потери эксергии в котле – утилизаторе

,

кДж/с.


Эксергетический КПД котла – утилизатора

,

.

4.4 Графическая зависимость по исследовательской задаче

Используя аналитические выражения построить зависимость влияния температуры окружающего воздуха t0 (t0=0…250 °С с шагом 50 °С) на КПД брутто котельного агрегата.

Расчетные формулы:

,

,

q3=2.8%.

;

q5=1,28%

;

Составим таблицу:

t0

h0 q2

0 1,5998 1,2987 1,4943 1,2971 0 10,00198 85,91802
50 1,65005 1,29955 1,49975 1,29875 759,1316 7,863584 88,05642
100 1,7003 1,3004 1,5052 1,3004 1525,151 5,705784 90,21422
150 1,7188 1,3021 1,51375 1,30375 2295,391 3,536093 92,38391
200 1,7373 1,3038 1,5223 1,3071 3070,742 1,352007 94,56799
250 1,8 1,30735 1,53235 1,31215 3866,656 -0,89001 96,81001

Рисунок 7 - Графическая зависимость по исследовательской задаче

4.5 Термодинамическая оценка эффективности совместной работы котельного агрегата с котлом – утилизатором

Составляем эксергетический баланс котельного агрегата без воздухоподогревателя, но с котлом – утилизатором

,

,

кДж/м3.

или в %

,

.

При использовании котельного агрегата с воздухоподогревателем, эксергия уходящих газов составляет  кДж/м3

или 17,86% - меньше, чем при использовании котла – утилизатора, т.е. работа совершаемая уходящими газами в процессе, в первом случае меньше.

Таким образом, использование котлов – утилизаторов делает работу котельного – агрегата эффективнее и энергетически совершеннее.


5 Схема котла утилизатора [1]

Рисунок 8- Схема котла – утилизатора

Котлы – утилизаторы типа КУ – 40 устанавливают за нагревательными, мартеновскими, обжиговыми печами, а также используют в химических и других отраслях промышленности. Разработаны для установки в закрытом помещении. Рассчитаны на работу под разряжением. Сейсмичность района установки 6 баллов.

Котлы – газотурбинные, с естественной циркуляцией, с горизонтальным расположением испарительных поверхностей. Внутренний диаметр барабана котла КУ – 2586 мм, толщина стенки обечайки – 16, днищ – 20 мм. Материал обечайки и днищ - сталь 20К. Барабан имеет внутрибарабанное паросепарационное устройство в виде дырчатого листа и жалюзи.

Газ в котле КУ – 40 проходит по 239 дымогарным трубам, диаметр труб 60*3 мм (сталь 20).

К барабану котла крепятся входная и выходная газовые камеры. Внутри входной газовой камеры имеется пароперегреватель с горизонтальным расположением змеевиков. Диаметр труб пароперегревателя котла КУ – 40 – 32*3 мм (сталь 20).

Обмуровка входной газовой камеры многослойная, состоит из слоев шамотобетона, термоизоляционного бетона и матрацев из шлаковаты.

Для очистки поверхностей нагрева дымогарных труб котла предусмотрено обдувное устройство.

Котел снабжен необходимой арматурой, гарнитурой, устройством для отбора проб пара и воды, а также контрольно – измерительного приборами. Питание котлов и сигнализация уровня воды в барабане автоматизированы.


6 Схема экономайзера [1]

Рисунок 9 - Схема экономайзера

Металлоемкий контактный теплообменник дает возможность не только сократить стоимость утилизационной установки, но и обеспечивает глубокое охлаждение уходящих газов ниже точки росы, которая для сгорания природного газа составляет 50 – 60 оС. При этом используется не только физическое тепло уходящих газов, но и теплота конденсации содержащихся в них водяных паров.

Насадкой в контактном экономайзере служат керамические кольца Рашига размером 50*50 мм. Рабочая насадка укладывается высотой 1 м в шахматном порядке. Каплеулавливающая насадка высотой 0,2 м загружается “внавал”. Вода может нагреваться в этих экономайзерах до 50 – 60 оС. Нагретая вода используется для производственных и бытовых нужд.

Аналогичные теплообменники можно применять для утилизации тепла уходящих газов некоторых промышленных печей, сушилок, газовых турбин и других тепловых установок, работающих на природном газе.


7 Схема воздухоподогревателя [4]


Рисунок 10 - Схема воздухоподогревателя


В настоящее время наибольшее распространение получили стальные трубчатые воздухоподогреватели. Их изготавливают из труб диаметром 43..51 мм и толщиной стенок 1,5..2 мм. Трубы располагают вертикально в шахматном порядке и приваривают к двум трубным решеткам, образуя отдельную секцию, называющую кубом воздухоподогревателя. Воздухоподогреватель собирают обычно из нескольких кубов, соединенных между собой перепускными коробами. Дымовые газы движутся внутри труб, воздух, нагнетаемый вентилятором омывает их снаружи в поперечном сечении.


8 Схема горелки [3]

Рисунок 11- Схема горелки

Для разделенного сжигания мазута и природного газа под котлами применяют комбинированные горелки типа ГМГм. Газообразное топливо через патрубок 3 попадает в кольцевую камеру 4 газораспределительного устройства, состоящего из газовых насадок с отверстиями, через которые часть газа подается в камеру первичного воздуха 6, а часть поступает в зону вторичного воздуха 5. Воздухонаправляющее устройство первичного воздуха состоит из подводящего трубопровода 9 и лопаточного завихрителя с прямыми лопатками. Зона вторичного воздуха образуется подводящем трубопроводом и лопаточным завихрителем с прямыми лопатками под углом 60 оС. Закрутка первичного и вторичного воздуха производится в одну сторону.

Таким образом, в горелках происходит подача газа в массу воздуха мелкими струйками, а также завихрение газовоздушного потока, что обеспечивает качественное и быстрое смешение газа воздуха. Газомазутная горелка снабжена паромеханической форсункой для сжигания мазута, состоящей из корпуса 1, центрального ствола 2 и распыляющей головки 7. Мазут подается по внутренней трубе ствола 2, проходит через распределенную шайбу и поступает в топливный завихритель. Пар подается по наружной трубе 10 и попадает в паровой завихритель в зоне головки форсунки 7. Таким образом достигается паромеханическое распыление топлива. Образовавшаяся взвесь смешивается с необходимым количеством воздуха, после чего поступает в топку, где и сгорает.


Заключение

В данной работе произведен расчет котельного агрегата и котла – утилизатора, применяемых в химической нефтяной промышленности. Эти установки отличаются высокой эффективностью процесса сжигания и расхода топлива.

Приведены диаграммы тепловых потоков и диаграмма Грассмана – Шаргута для эксергетического баланса котельного аппарата, график изменения температур вдоль поверхности нагрева котла – утилизатора.

Также приведен расчет процесса горения на ЭВМ и ht – диаграмма продуктов сгорания топлива. Исследована зависимость влияния температуры подогрева воздуха в воздухоподогревателе на калориметрическую температуру горения топлива и построена графическая зависимость.

Проведен тепловой расчет котла – утилизатора и подобран котел – утилизатор типа КУ – 40.

Сегодня экономические факторы заставляют резко увеличить степень использования добывания топлива. Выгоднее вкладывать средства на увеличение добычи топлива, чтобы продолжать расходовать его с низкой эффективностью, а в разработку технологических процессов, обеспечивающих более экономное его использование.


Список использованной литературы

1. Латыпов Р.Ш. Шарафиев Р.Г. Техническая термодинамика и энерготехнология химических производств: Учебник для вузов. – М.: Энергоиздат, 1988. – 344 с.

2. Чечеткин А.В. Занемонец Н.А. Теплотехника. – М.: Высшая школа, 1986. – 264 с.

3. Алабовский А.Н., Константинов С.М., Недужий И.Н. Теплотехника. – Киев: Высшая школа. 1986. – 256 с.

4. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара: Справочник. – М.: Энероиздат, 1984. – 80 с.

5. Роддатис К.Ф., Соколовский Я.Б. Справочник по котельным установкам малой производительности. – М.: Энергия, 1975. – 240 с.

6. Теплотехнический справочник. – М.: Энергия, 1975, 1976.


Страницы: 1, 2


© 2010 Рефераты