Рефераты

Дипломная работа: Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Суммарная расчетная нагрузка всей ГПП-33

,

QрS=11860кВАр.

На основе данного расчета, при проектировании на перспективу, по табл. 27.8 [1] наметим к установке на ГПП-33 два трансформатора типа ТРДН-40000/110 поскольку трансформаторы типа ТРДН-32000/110 сняты с производства.

Проверка на перегрузочную способность при установке на ГПП-33 двух трансформаторов.

 - условие выполняется.

3.4. Расчет высоковольтных кабельных линий

Поверочный расчет производим для кабелей от ГПП-33 до РП-365.

Согласно ПУЭ [2], расчет производим по:

1)  экономической плотности тока

расчетный ток кабельной линии

, (3.4)

;

по условию прокладки кабеля и температуре О.С.

, (3.5)

где к1=к2=1 – коэффициенты учитывающие условия прокладки кабеля (на эстакадах) и температуру О.С.=15о С.

, (3.6)

где jЭ=1,7А/мм2 – экономическая плотность тока при числе часов использования максимума нагрузки 3000-5000.

;

по табл. 4.14. [3] выбираем кабель марки ААБГ- 3х240.

2)  по допустимому току нагрева

условие: IрA<IДОП

,

где S’р – расчетная мощность в аварийном режиме

;

с учетом этого по табл. 4.14. [3] выбираем кабель марки ААБГ – 3(3х240).

3)  проверочный расчет на термическую стойкость

, (3.7.)

где I – установившийся ток К.З., tФ – приведенное время установившегося тока К.З., к – температурный коэффициент =75А*с0,5/мм2

расчетное значение тока К.З. приведено ниже

;

4) Согласно ПУЭ [2] проверку кабельных линий по допустимому падению напряжения не производим.

Расчет кабельной линии от ГПП-33 до РП-363 сводим в таблицу.

Таблица 3.2.

Выбор кабельной линии.

Марка кабеля Iдоп., А Iрасч., А

Iрасч.А, А

Sтермич.стоик., мм2

ААБлГ-4(3х185) 1000 528 705 63

3.5. Расчет токов короткого замыкания

Составим схему замещения ГПП-33, РП-363 и РП-365 принимая

 

Расчет ведем по методу расчетных кривых для турбогенераторов по общему изменению.

базисный ток

;

расчетные сопротивления элементов схемы замещения:

воздушная линия l=1,5км

сечение ВЛ

;

где  - экономическое сечение при числе часов максимального использования >5000.

;

;

трансформатор

;

при S>1000кВА активное сопротивление не учитываем

кабель ААБлГ-4(3х185), l=335м от ГПП-33 до РП-363

;

;

кабель ААШВУ-3х150, l=25м от РП-363 до 9РПП6 яч.№2

;

;

кабель ААБлГ-4(3х185), l=707м от ГПП-33 до РП-365     

;

;

реактор РБ-10-630-0,56

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К1

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К1

;

 , 0,255<0,26; активное сопротивление можно не учитывать

расчетное сопротивление до точки К1

, при Scис= периодическая составляющая является незатухающей

I0,1=I”=I;

ток трехфазного короткого замыкания

;

ударный ток короткого замыкания

при  по кривым рис.6.2. [4] определяем Куд=1,6

;

мощность короткого замыкания

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К3

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К3

;

, 0,285<0,2853; активное сопротивление можно не учитывать

расчетное сопротивление до точки К3

,

ток трехфазного короткого замыкания

;

ударный ток короткого замыкания

при  по кривым рис.6.2. [4] определяем Куд=1,6

;

мощность короткого замыкания

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К2

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К2

;

 , 0,274<1,376; активное сопротивление можно не учитывать

при  ток трехфазного короткого замыкания

;

ударный ток короткого замыкания

при  по кривым рис.6.2. [4] определяем Куд=1,8

;

мощность короткого замыкания

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К4

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К4

;

 , 0,269<0,275; активное сопротивление можно не учитывать

при Sсис= ток трехфазного короткого замыкания

;

подпитка места КЗ от СД

Iном.СД=;

IК=4831+4*147=5419А

ударный ток короткого замыкания

при  по кривым рис.6.2. [4] определяем Куд=1,6

;

мощность короткого замыкания

;

На основании сделанных расчетов можно отказаться от установки реакторов на ГПП-33, что приведет к некоторому увеличению мощности КЗ, но находится в пределах термической и динамической стойкости коммутационной аппаратуры.


4. Автоматизированный электропривод горных машин и установок

Скиповые подъемные машины рудника «Таймырский» размещены в башенном копре и предназначены для выдачи руды с горизонта 1150м. (для северной ветви) – 1345м. (для южной ветви).

Основное требование к системе автоматического управления подъемной установкой – точное выполнение заданной диаграммы скорости вне зависимости от загрузки подъемных сосудов и других внешних факторов, влияющих на нагрузку приводного двигателя подъемной установки.

Системы автоматического управления грузовых и грузолюдских подъемных установок должны отвечать требованиям экономичности, обеспечивать надежность и безопасность работы подъема во всех режимах, а именно:

-  малую скорость при снятии подъемных сосудов с брусьев

-  реализацию заданных законов в период разгона, торможения и дотягивания, исключающих появление ускорений и замедлений, превышающих предельно допустимые значения, устанавливаемые из условий исключения проскальзывания канатов по шкиву трения и возникновения недопустимых динамических нагрузок.

-  отключение электропривода и включение рабочего тормоза при стопорении с контролем положения сосудов при загрузке и разгрузке.

-  контроль работы загрузочно-разгрузочных устройств и состояния технологического оборудования подъемной установки.

-  контроль отклонения скорости и включения защитных устройств при привешениях скоростью допустимых значений.

-  защиты от переподъемов, нулевую и максимальную защиты.

-  предусматривать остановку сосудов в промежуточных точках ствола.

световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера.

Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного тока с независимым возбуж­дением.

Поскольку регулирование скорости осуществляется за счет изменения напряжения, подводимого к якорю двигателя, то в качестве преобразователя напряжения постоянного тока наибо­лее перспективны тиристорные управляемые выпрямители, кото­рые могут подключаться непосредственно к якорной обмотке приводного двигателя либо к обмотке возбуждения генератора постоянного тока, питающего приводной двигатель.

Управление приводами с вентильными выпрямителями осу­ществляется с помощью электронных регуляторов, обладаю­щих большим быстродействием.

Разрабатываются и применяются унифицированные системы регулирования с последовательной коррекцией, выполняемой активными звеньями, построенными на операционных усилите­лях постоянного тока (с коэффициентами усиления в разомкну­том состоянии не менее 104), имеющих следующие преимущест­ва:

- реализацию с высокой точностью желаемых передаточных функций,

- малую мощность управления усилителей, что позво­ляет применять датчики и задатчики параметров с очень малой выходной мощностью;

 - легкость и простоту наладки систем уп­равления электроприводами.

Построение систем управления на базе использования усилителей обеспечивает возможность широкой унификации схем и конструкций элементов, в том числе различного рода функциональных и других аналоговых устройств, предназ­наченных не только для автоматизации электроприводов, но и для решения задач автоматизации технологических процессов.


4.1.Обоснование принятого способа и аппаратуры автоматизации

Поскольку для подъемных установок накладываются ограничения по скорости и ускорению, вызванные требованием снижения динамических нагрузок в канатах и обеспечением комфорта при перевозке людей, то не требуется быстрого изменения величины и знака электромагнитного момента двигателя. Нет также необходимости в быстром реверсе скорости в технологических и аварийных режимах. Реверс скорости производится только из состояния покоя после остановки электродвигателя. Поэтому оказывается желательным и возможным применение для шахтных подъемных машин привода по системе ТП—Д с нереверсивным силовым ТП и реверсивным ТВ. Такой привод является экономичным и надежным, может обеспечивать требуемую плавность изменения скорости, ускорения и момента двигателя.

Преимущества систем подчиненного управления применительно к приводам подъемных машин.

Реализация систем подчиненного управления как многократно интегрирующих позволяет обеспечить минимальные ошибки регулирования по управлению и нагрузке. В таких системах статическая ошибка равна нулю при изменении в широких пределах статической нагрузки подъемных установок, весьма малыми оказываются динамические ошибки регулирования. На основе построения САУ как многократно интегрирующей с астатизмом второго порядка обеспечивается удовлетворение технологических требований по точности и быстродействию подъемных установок всех типов и исполнении.

Уменьшение времени цикла и повышение производительности подъемной установки обеспечивается:

- гарантированной линейностью изменения скорости; уменьшением периода трогания машин;

- четкостью повторения заданной диаграммы скорости при оптимальном использовании перегрузочной способности двигателя; большой точностью поддержания максимальной скорости, а также сниженной скоростью дотягивания;

- повышением точности остановки машины и подъемных сосудов в конце пути; исключением пауз для маневров при, ручном управлении и неточной остановке

Применением систем подчиненного управления достигаются:

- достаточная точность задания скорости и высокая точность регулирования скорости и отработки заданной диаграммы;

- стабильность программы скорости с помощью задатчика интенсивности, заменяющего программно-профильное устройство, практическое исключение разрегулирования устройства задания скорости, исключение необходимости его подстройки и возможности неквалифицированного вмешательства для изменения заданной программы движения;

- повышение безопасности эксплуатации подъемной установки;

- после аварийной остановки подъемной машины, когда участок пути от места остановки до точки нормального замедления оказывается меньше пути разгона, дальнейший разгон ограничивается точкой нормального замедления; после аварийной остановки машины на пути замедления продолжение движения возможно только на сниженной скорости дотягивания;

- линейность изменения заданной и действительной скорости;

- замена линии рыскания прямолинейным изменением скорости повышает к. п. д. установки, уменьшает эффективную мощность двигателя и расход электроэнергии;

- возможность ограничения пусковой мощности привода и улучшения работы высоковольтной сети;

- более высокие показатели формирования диаграммы движения;

стабильность скорости, ускорения, скорости нарастания тока якорной цепи привода, рывка, ограничение предельного тока; ограничение параметров диаграммы движения при пуске с середины ствола после аварийной остановки подъемной машины.

Применение систем подчиненного управления позволяет получить оптимальные диаграммы по нагрузкам на кинематические звенья подъемной установки (на машину и подъемные канаты). При этом увеличивается надежность машины за счет улучшения динамических свойств привода, снижается темп усталостного износа, повышается срок службы оборудования. При улучшении режима работы оборудования уменьшаются затраты и время ухода за оборудованием.

При автоматическом выполнении цикла подъема существенно улучшается работа подъемной установки, так как выбор оптимальной диаграммы скорости осуществляется применением электронного программного устройства — задатчика интенсивности и САУ — УБСР.

Принцип подчиненного регулирования заключается в том, что выходное напряжение регулятора является входным сигналом для следующего внутреннего контура управления. Характер переходного процесса в системе определяется типами звеньев в системы.

Задача всех регуляторов сводится к формированию определенного переходного процесса. Каждый регулятор должен произвести компенсацию максимальной постоянной времени, которая входит в данный контур регулирования. Так как на практике невозможно абсолютно компенсировать постоянную времени, то система настраивается на определенный оптимум.

Настройка системы заключается в обеспечении минимального времени регулирования и не превышения величиной перерегулирования допустимого критического значения. Это означает, что передаточная функция замкнутой системы состоящая из двух звеньев оптимизируется к следующей передаточной функции:

 , (4.1)

где отношение постоянных времени T2/T1=m=2 – условие настройки на технический оптимум.

Регулирование тока якорной цепи.

Согласно общему методу синтеза систем подчиненного регулирования расчет параметров систем подчиненного регулирования производят путем последовательной оптимизации отдельных контуров регулирования, заключающейся в приведении передаточной функции замкнутого контура в соответствии с поставленными требованиями.

В системе регулирования скорости соподчиненным является контур регулирования тока якорной цепи. Общепринятый принцип оптимизации из условия технического оптимума базируется на упрощенной структурной схеме двигателя постоянного тока, не учитывающей обратной связи по э.д.с., на постоянстве параметров и линейности характеристик элементов, входящих в контур регулирования тока.

Объектом регулирования для контура тока является тиристорный преобразователь и ДПТ-НВ, передаточная функция которых:

; (4.2)

где КТП – коэффициент усиления ТП,

КТ – коэффициент обратной связи по э.д.с.,

R – сопротивление якорной цепи,

Tm - постоянная времени ТП,

TЯ – постоянная времени якорной цепи.

При Tm > TЯ внутреннюю обратную связь по э.д.с. не учитывают.

Передаточная функция замкнутого контура тока:

; (4.3)

По условию технического оптимума принимается T1= Tm и аТ=2 – коэффициент демпфирования.

При этом обеспечивается оптимальное качество регулирования в смысле минимума перерегулирования при высоком быстродействии, но не учитывается скорость нарастания тока якорной цепи, которая регламентируется рядом технологических условий работы электропривода подъема.

Одно из требований к системе регулирования тока – необходимость ограничения скорости нарастания тока якорной цепи. Для этого используют двухконтурную систему регулирования тока якорной цепи с дополнительным контуром ограничения его производной. При этом настройка внутреннего контура (значение аТ) определяется уже не требованиями ограничения diЯ/dt, а из условия согласования работы внутреннего и внешнего контуров, что достигается при выполнении неравенства

tР.ВН =< tР.ВШ

в котором время регулирования внешнего контура превышает время регулирования внутреннего.

На основании этого можно записать:

 ; (4.4)

где Tm - эквивалентная некомпенсируемая постоянная контура тока.

Регулирование скорости.

При синтезе контура регулирования скорости необходимо учитывать, что САУ должна быть двукратноинтегрирующей и обеспечивать требуемую точность отработки заданной диаграммы скорости.

Задача синтеза контура регулирования скорости – определение оптимальных его параметров, т.е. коэффициентов аС и bС из условия обеспечения требуемого быстродействия при заданных параметрах внутреннего контура регулирования тока.

Передаточная функция замкнутой САУ скоростью имеет вид:

; (4.5)

Для определения желаемой передаточной функции задаются масштабом времени:

Z = tрег / tн

Где tн – нормированное время переходного процесса, вычисляемое по нормированным переходным функциям:

tрег = 5dvmax/amax

Здесь tрег – время регулирования, определяемое по величине допустимой динамической ошибки d, максимальной скорости движения подъемных сосудов vmax, максимальному ускорению в период разгона и замедления аmax.

Подбирая параметры системы аТqm и Z добиваются удовлетворительного качества регулирования при малых значениях аТqm и больших значениях Z. При увеличении аТqm и уменьшении Z увеличиваются перерегулирование и колебательность процесса.

Особенность статических систем автоматического регулирования координат электропривода — возникновение статической ошибки, характеризующей различие между заданным и действительным значениями регулируемого параметра в статически режимах . Применительно к системам автоматического регулирования электроприводом рудничных подъемных установок, под статическим режимом понимают режим движения с установившейся скоростью.

При этом статическую ошибку системы автоматического регулирования оценивают разностью между заданной и действительной скоростями движения, выраженными в абсолютных или относительных единицах:

Dn= nзадан - nдейств ; d=(nзадан - nдейств)/ nб ,

где nзадан , nдейств , nб — соответственно заданная, действительная и базовая скорости. За базовую скорость обычно принимают максимальную скорость движения подъемных сосудов.

Статическая ошибка — одна из количественных оценок качества процесса регулирования — зависит от управляющего и возмущающего воздействий, параметров электропривода и параметров системы автоматического регулирования. Возмущающее воздействий (в системе электропривода рудничных подъемных установок — статическое усилие, обусловленное разностью статических натяжений поднимающейся и опускающейся ветвей каната) в значительной степени изменяется в зависимости от типа и исполнения подъемной установки.


5. Автоматическое управление технологическими процессами, машинами и установками

 

5.1. Автоматизация производственных процессов

Проектами предусматриваются следующие решения по пусковым объектам:

По башенному копру и надшахтному зданию КС-3 и стволу:

- автоматизация калориферных установок I и II очереди

- автоматизация зумпфого водоотлива

- автоматизация системы пожаротушения

- автоматизация системы охлаждения подъемных машин

- автоматизация систем приточного воздухоснабжения в надшахтном здании.

По диспетчеризации рудника:

- телеизмерение текущее (ТИТ) и телеизмерение интегральное (ТИИ) параметров горячего водоснабжения, холодного водоснабжения, воздухоснабжения по площадкам вспомогательных стволов, вентиляционных стволов и по основной площадке.

По галереям и сетям АБК основной площадки:

- автоматизация контроля параметров узла ввода на горячей воде

По АБК на основной площадке:

- автоматизация приточных систем П1…П7

- автоматизация систем обеспыливания ОС1…ОС5

- автоматизация зумпфового водоотлива

- автоматизация контроля параметров узла ввода на горячей воде.

По турбокомпрессорной:

- автоматизация турбокомпрессора №12 (привязка аппратуры УКАС-АМ, поступающей комплектно с компрессором). Дополнительно выполнен вынос приборов контроля температуры масла, воды и подшипников турбокомпрессора №12 в операторскую с заменой прибора контроля температуры воды и масла с КСМ2 на УМС.

По ПДЦ на гор. –1100 м:

- автоматизация контроля уровней руды в рудоспусках

- автоматизация маслостанции дробилки

- автоматизация аспирационной установки.

5.2. Телемеханизация и диспетчеризация

Проектами предусматривается телемеханизация объектов поверхности (подстанции, вентиляторные, калориферные, пожбаки, подъёмные машины, сети ТВС) и подземной части рудника (подстанции, водоотливные установки, ШВД). Кроме того, выполнено размещение диспетчерского и телемеханического оборудования в диспетчерском пункте рудника на отм.+14.200 здания АБК на основной площадке.

Сбор и передача информации типа ТС-ТИТ-ТИИ-ТУ-СК осуществляется комплексом устройств отображения информации УОТИ с микропроцессором «Электроника-60». Информация диспетчеру и энергооператору может быть представлена помимо комплекса УОТИ.

Проектами предусматривается создание рабочих мест горного диспетчера, энергооператора, поста ликвидации аварий.

Средствами отображения информации являются щит горного диспетчера (ЩГД), щит ликвидации аварии (ЩЛА), щит энергооператора (ЩЭО), стол энергооператора.

5.3. Метаноконтроль

Контроль за состоянием рудничной атмосферы с помощью автоматических приборов предусматривается в камерных выработках гор. –1300 м и ПДЦ, в которых выполнена местная световая и звуковая сигнализация с отключением электроэнергии при предельно допустимой концентрации метана.

Сигнализация о наличии метана в околоствольных дворах ВС-5 и ВС-6 вентиляционно – закладочных горизонтов –950 м., -1000 м., и –1200 м. выведена диспетчеру на стойку СПИ-1. Кроме того, выполнена местная световая и звуковая сигнализация.

5.4. Связь и сигнализация

Объекты пускового комплекса оснащены следующими видами связи:

- общешахтной телефонной связью абонентов от АТС100/2000 рудника «Октябрьский»;

- диспетчерской телефонной связью с абонентами поверхности на базе коммутатора ПОС-90, установленного у горного диспетчера, и с абонентами в подземных выработках, на базе комплекса ДИСК-ШАТС;

- громкоговорящей поисково-распорядительной связью на объектах поверхности;

- громкоговорящей искробезопасной связью оповещения и аварийной сигнализацией подземных объектов на базе комплекса ДИСК-ШАТС;

- местной стволовой высокочастотной связью между машинистами подъёмов с рукоятчиками и стволовыми на базе аппаратуры систем «Сигнал-16» и «Сигнал-17»;

- телефонной связью диспетчера транспорта с абонентами горизонтов с помощью искробезопасной аппаратуры КДШ, высокочастотной связью с машинистами электровозов на базе аппаратуры ВГСТ-76;

- местной телефонной связью в стволах и на горизонтах отдельными цепочками на базе телефонных аппаратов системы МБ;

Производственные помещения и АБК оборудованы автоматической пожарной сигнализацией.


5.5. АСБ-ЧУС гор. –1300 м

Рабочей документацией предусматривается оборудование горизонта –1300 м устройствами автоматической светофорной блокировки (АСБ) и частотного управления стрелочными переводами (ЧУС) с использованием аппаратуры АБСС.1М и комплекса НЭРПА-1. В проекте также предусмотрены устройства автоматического управления сигнальными огнями и шлюзовыми дверями на соединительной выработке с ВС-6 с возможностью выдачи через систему телемеханики информации диспетчеру о положении дверей, занятости шлюза, а также приема сигналов управления дверями от диспетчера.

Автоматизация шлюзовых вентдверей выполнена на базе аппаратуры управления шлюзовыми устройствами АШУ.

Устройства АСБ запроектированы для кольцевой схемы откатки в установленном направлении движения составов с использованием одной рабочей частоты (1660 Гц) и учетом разработанных и утвержденных мероприятий по безопасному движению электровозного транспорта и выполнению маневровых работ.

Данным проектом предусмотрены 7 узлов АСБ и корректировка трех узлов, введенных в действие III пусковым комплексом рудника.

По согласованию с эксплуатацией рудника определены стрелочные переводы, оборудуемые устройствами частотного управления с движущегося электровоза и по схеме с местным управлением.

Проектом предусматривается также опережающая сигнализация «Берегись электровоза».

Размещение оборудования АСБ, ЧУС, АШУ производится в специальных нишах.

Места установки светофоров, сигнальных указателей, транспарантов «БЭ», датчиков АСБ и ЧУС уточняются при монтаже устройств.


6. Специальная часть

6.1. Сущность вопроса о нормировании качества электроэнергии на промышленных предприятиях

При известных экономических характеристиках потребителей и показателях воздействия параметров электроэнергии на режимы работы сетей и оборудования, с одной стороны, и известных стоимостях соответствующих технических средств повышения КЭ—с другой, теоретически можно для каждого потребителя определить оптимальные уровни параметров электроэнергии аналогично оптимальному значению реактивной мощности. Практическое же решение задач повышения качества электроэнергии таким путем наталкивается на трудности как информационного, так и организационного характера. Первые обусловлены необходимостью получе­ния специфической информации о параметрах электроэнергии, которая в настоящее время оперативно не регистрируется, вторые—двухсторонностыо проблемы электромагнитной совместимости: ужесточать ли требования к искажающим ЭП в части помех, вносимых ими в сеть, или снижать восприимчивость остальных ЭП к этим помехам. Оба пути требуют определенных затрат, и теоретически здесь также может быть найдено оптимальное решение.

Однако производить ЭП с различными характеристиками влияния на режим сети или с различной степенью восприимчивости, сообразуясь с конкретной электромагнитной обстановкой в тех или иных узлах системы, практически невозможно. Кроме того, электромагнитная обстановка с течением времени меняется, что при таком подходе потребует изменения характеристик ЭП. В отличие от потребления реактивной мощности, изменяющегося практически в однозначном направлении, значения параметров электроэнергии могут измениться в любую сторону. И, наконец, в настоящее время отсутствуют методы и средства (программы для ЭВМ), позволяющие определять эти оптимальные значения с точностью, достаточной для практических целей и оправдывающей столь сложную организацию работ. Поэтому принятый в настоящее время путь сохранения допустимой электромагнитной обстановки в сети состоит в нормировании предельных значений параметров электроэнергии. Параметры электроэнергии или их комбинации, на значения которых накладывают соответствующие ограничения (нормы), называют показателями электромагнитной совместимости оборудования.

Для обеспечения электромагнитной совместимости оборудования необходимо иметь комплекс взаимно согласованных норм, применяемых в различных сферах про­ектирования и эксплуатации сетей и ЭП:

1) нормы на предельные уровни искажений, вносимых в сеть отдельными ЭП. Эти нормы используют при конструировании ЭП, вносящих искажения в сеть;

2) нормы на предельные уровни искажений, вносимых в сеть энергосистемы потребителями энергии. Эти нормы относятся к границам раздела сетей и определяют характер мер, которые должен принять потребитель, имеющий различные искажающие ЭП, часть из которых, возможно, не оборудована специальными подавляющими устройствами, а искажения не оказывают влияния на работу ЭП данного потребителя. Эти нормы используют при проектировании или реконструкции сети потребителя с целью принятия централизованных мер по предотвращению выброса недопустимо больших искажений в питающую сеть. В условиях эксплуатации на этих нормах должна основываться система надбавок к тарифам на электроэнергию за внесение искажений, превышающих установленный уровень;

3) нормы на качество поставляемой энергии, представляющие собой условия, обеспечиваемые энергоснабжающими организациями на границе раздела сетей. В эксплуатации на этих нормах должна основываться система скидок с тарифов за поставку электроэнергии пониженного качества;

4) нормы на предельные уровни искажений на вводах ЭП, чувствительных к искажениям питающего напряжения, используемые при конструировании ЭП. На основании этих норм предусматривают мероприятия по защите ЭП от помех. Очевидно, что уровень искажений на вводах ЭП в общем случае не совпадает с их уровнем на границе раздела и может быть выше последнего из-за искажений, вносимых собственными ЭП. Кроме того, в условиях эксплуатации возможны случаи, когда в послеаварийных режимах энергия поставляется с пониженным качеством. Это приводит к снижению экономических показателей оборудования, но не должно приводить к выходу его из строя. Поэтому нормы искажений в расчете на которые должны конструироваться ЭП должны быть выше норм, предъявляемых к качеству электроэнергии в нормальных условиях электроснабжения.

Фактические режимы работы ЭП будут отличаться от тех, в расчете на которые они проектировались, вслед­ствие многообразия условий, в которых используются ЭП, и изменения во времени параметров электроэнергии на их вводах. Для некоторых типов ЭП воздействие параметров может проявляться в одной и той же форме (например, нагрева). При этом превышение одного из ПКЭ над нормированным значением может не вызвать необходимости применения каких-либо мер, если другие ПКЭ в это время находятся существенно ниже предель­ных значений. Для оценки допустимости режимов работы конкретного оборудования в конкретных условиях необходимо, с одной стороны, знать функцию совместного воздействия на характеристики оборудования всех ПКЭ, а с другой— уметь оценивать допустимость режима при случайном характере воздействующих факторов.

Разработка охарактеризованного выше комплекса норм еще не завершена. В настоящее время действует стандарт, устанавливающий нормы качества электроэнергии на вводах ЭП (ГОСТ 13109—67). Этот стандарт не укладывается в структуру норм, описанную выше, представляя собой нормы на качество электроэнергии, потребляемой непосредственно ЭП, т. е. нечто среднее между описанным в пп.З и 4, безотносительно к организационному механизму ответственности за несоблюдение норм. Несмотря на недостатки стандарта, его использование оказалось полезным в основном в связи с учетом его требований проектными организациями. В условиях же эксплуатации проверка соблюдения его требований практически не проводилась из-за отсутствия как средств измерения ПКЭ, так и организационного механизма контроля качества. Сказался и тот факт, что в ряде случаев ЭП функционируют нормально и при несоблюдении его требований.

ГОСТ 13109—67 устанавливает для трехфазных сетей переменного тока шесть ПКЭ: отклонение напряжения, отклонение частоты, размах колебаний напряжения, размах колебаний частоты, коэффициенты обратной последовательности и искажения синусоидальности напряжений.

Целью данной работы является рассмотрение последнего показателя (искажения синусоидальности).

Задача ограничения уровней гармоник в электрических сетях имеет два аспекта: технический и экономический.

Необходимость лимитировать допустимые величины гармоник определяется такими техническими требованиями, как исключение неуспешных коммутаций вентиль­ных преобразователей (в особенности это относится к реверсивным преобразователям, работающим и в выпрямительном, и в инвентарном режиме); предотвращение повреждений батарей конденсаторов и других аппаратов вследствие резонансных явлений на высших гармониках; обеспечение качественной работы устройств релейной защиты и измерительных приборов, систем автоматики, телемеханики и связи.

При наличии высших гармоник ухудшаются экономические показатели работы систем электроснабжения предприятий в результате возникновения добавочных потерь от гармоник и сокращения срока службы изоляции электрических машин, трансформаторов, батарей конденсаторов и силовых кабелей.;

В настоящее время в различных странах действуют национальные нормы, лимитирующие, как правило, уровень гармоник в кривых напряжений или токов. При составлении этих норм принимались во внимание исключительно технические соображения, так как, по мнению ряда зарубежных авторов, возможность расчета ущерба от действия гармоник весьма проблематична. В отдельных случаях энергетическими системами Западной Европы задаются максимально допустимые уровни отдельных гармоник напряжения, что необходимо для выбора силовых фильтров.

Международной электротехнической комиссией (МЭК) приняты нормы, согласно которым допускается мгновенное отклонение напряжения сети, т. е. разность ординат кривых результирующего напряжения и первой гармоники, на шинах преобразователя не более 5% амплитудного значения.

6.2. Сущность искажения синусоидальности кривых напряжений и токов

Искажения вызываются работой ЭП с нелинейной вольт-амперной характеристикой и регулируемых преобразователей переменного тока в постоянный. Кривые тока и напряжения в этих случаях приобретают вид, отличный с синусоиды. Пользуясь методом гармонических составляющих, можно исходную несинусоидальную кривую разложить на сумму синусоидальных с определенными значениями амплитуд гармоник их начальных углов.

Гармоники создают магнитные поля различных последовательностей. Так как кривые напряжений в каждой фазе сдвинуты между собой на 1/3 (или на полный период третьей гармоники), то третьи гармоники совпадают друг с другом по фазе и образуют нулевую последовательность. Аналогично ведут себя все гармоники, кратные трем. Поэтому токи гармоник, кратных трем, не могут существовать в трехфазной сети без нулевого провода или выйти за пределы обмоток, соединенных в треугольник. Порядок чередования фаз для гармоник n=4, 7, 10, 13... (n -1 делится на 3) совпадает с прямым, а гармоник n=2, 5, 8, 11,... (n+1 делится на 3) — с обратным порядком.

6.3. Влияния высших гармоник на силовые установки

Высшие гармоники в системе электроснабжения промышленных предприятий, как уже отмечалось ранее, нежелательны по ряду причин: появляются дополнительные потери в электрических машинах, трансформаторах и сетях; затрудняется компенсация реактивной мощности с помощью батарей конденсаторов; сокращается срок службы изоляции электрических машин и аппаратов; ухудшается качество работы систем релейной защиты, автоматики, телемеханики и связи.

При работе асинхронного электродвигателя в условиях несинусоидального напряжения несколько снижаются его коэффициент мощности и вращающий момент на валу.

На практике искажение кривой напряжения мало влияет на коэффициент мощности двигателя; так, например, если амплитуды 5-й и 7-й гармоник напряжения составляют соответственно 20 и 15% амплитуды первой гармоники, то коэффициент мощности двигателя уменьшается на 2,6% в сравнении со значением его при синусоидальном напряжении. В условиях промышлен­ных предприятий искажения напряжения бывают меньшими, поэтому влияние высших гармоник на коэффициент мощности асинхронного электродвигателя можно не учитывать.

Моменты, развиваемые высшими гармониками тока, также составляют очень малую величину вращающего момента асинхронных и синхронных двигателей, определяемого первой гармоникой питающего напряжения. Так, для асинхронного двигателя средней мощности при удельном весе 5-й гармоники напряжения, равном 20% основной, момент, обусловленный 5-й гар­моникой, не превосходит 0,1% момента, развиваемого при промышленной частоте.

6.4. Влияние гармоник на изоляцию электроустановок

Искажение формы кривой напряжения оказывает существенное влияние на возникновение и протекание ионизационных процессов в изоляции электрических машин и трансформаторов.

При наличии газовых включений в изоляции в этих включениях возникает ионизация, сущность которой заключается в образовании объемных зарядов и последующей нейтрализации их. Нейтрализация заряда связана с рассеиванием энергии, следствием которого является электрическое, механическое и химическое воздействие на окружающий диэлектрик. В результате ионизационных процессов развиваются местные дефекты в изоляции, что приводит к снижению ее электрической прочности, возрастанию диэлектрических потерь и в конечном счете к сокращению срока службы.

Количество разрядов в газовых включениях зависит от формы кривой напряжения, приложенного к изоляции.

Подробные многолетние исследования форм кривых напряжения в сетях промышленных предприятий показывают, что в большинстве случаев за счет высших гармоник кривые напряжения принимают более заостренную форму в сравнении с синусоидой и поэтому наличие высших гармоник в этих сетях приводит к ускоренному старению изоляции электрических машин и трансформаторов.

При наличии гармоник в кривой напряжения процесс старения диэлектрика конденсаторов протекает также более интенсивно, чем в случае, когда конденсаторы работают при синусоидальном напряжении. Это объясняется тем, что физико-химические процессы в диэлектриках, обусловливающие старение их, значительно ускоряются при высоких частотах электрического поля. Аналогично влияет дополнительный нагрев, вызванный протеканием высших гармоник тока.

Таким образом, наличие высших гармоник в кривой напряжения, даже в допустимых пределах, приводит к значительной интенсификации процесса старения диэлектрика конденсаторов и как следствие сокращению срока службы их.

В соответствии с ГОСТ 1262-68 батареи конденсаторов могут длительно работать при перегрузке их токами высших гармоник не более чем на 30%; допустимое повышение напряжения лимитируется величиной 10%. Однако при длительной эксплуатации конденсаторов в этих условиях срок службы их сокращается. В условиях промышленных предприятий, как правило, конденсаторы периодически оказываются в режиме, близком к резонансу токов на частоте какой-либо из гармоник низкого порядка; вследствие систематических перегрузок они быстро выходят из строя. В настоящее время на многих крупных промышленных предприятиях, где имеются мощные вентильные преобразователи, батареи конденсаторов без применения специальных мер защиты их от высших гармоник, по существу, не работают. В результате снижается коэффициент мощности электроустановок цехов и производств, ухудшаются экономические показатели систем электроснабжения предприятий.

Страницы: 1, 2, 3, 4, 5


© 2010 Рефераты