p align="left">1) внести дополнительно на маржинальный счет деньги или ценные бумаги;
2) оплатить часть долга;
3) продать часть купленных акций и использовать выручку для частичной оплаты займа.
Каждое из этих решений приводит к увеличению фактической маржи.
Предположим, что курс акций снизился до 15 рублей, В этом случае балансовый отчет инвестора А будет иметь вид:
Активы
Пассивы
100 акций по 15 рублей =
100?15=1500 рублей
Долг(заем) =1250 рублей
Собственные средства=250 рублей
и его фактическая маржа составит;
что ниже уровня поддерживаемой маржи. Инвестор получит маржинальное требование и вынужден будет выбирать одну из трех альтернатив. Проведя соответствующие вычисления, можно показать, что в первом случае инвестор обязан внести дополнительно на счет 166,7 рублей; во втором случае ему необходимо погасить 125 рублей из суммы своего долга; при выборе третьей альтернативы он должен продать 34 акции и полученные за счет этого 510 рублей направить на погашение долга.
Какой из вариантов предпочтительней, зависит от финансового состояния, инвестора (если у него нет дополнительных денег, то для него приемлемым остается только третий вариант) и от выбранной им стратегии покупки с маржой.
Если фактическая маржа инвестора находится в пределах от 0,25 до 0,5, то есть выше поддерживаемой, но ниже первоначально требуемой, то операции со счетом инвестора будут ограничены в том смысле, что не будут позволяться любые действия (например, снятие денег со счета), уменьшающие величину фактической маржи.
Однако, надежды инвестора А связаны с возможным повышением цены акции. Предположим, что курс акций "Салюта" повысился до 30 рублей, В этом случае балансовый отчет инвестора А имеет вид:
Активы
Пассивы
100 акций по 30рублей =
100?30=3000 рублей
Долг(заем)=1250 рублей
Собственные средства = 1750 рублей
и фактическая маржа am= 1750/3000=0,583, что выше первоначально требуемой rm. В этих условиях у инвестора имеются альтернативы:
- снять на свои нужды такую часть суммы, чтобы после этого фактическая маржа am равнялась требуемой rm. Специфика операции покупки с маржой (брокер кредитует инвестора) приводит к тому, что при снятии инвестором денег брокер не изменяет величину активов, а перераспределяет пассивы, учитывая выплаты денег инвестору за счет увеличения долговых обязательств. В рассматриваемом случае инвестор, А может снять 250 руб. после этого величина долга возрастет до 1500 руб., собственные средства уменьшатся до 1500 руб., а активы останутся теми же - 3000 руб. Фактическая маржа после снятия денег станет равной: am = 1500/3000 = 0,5, что и должно быть по условиям снятия денег;
- закрыть позицию, то есть продать подорожавшие акции. В этом случае у инвестора имеется возможность повысить ожидаемую доходность акций. Действительно, если бы он покупал акции без маржи, то есть полностью за свой счет, то (без учета будущего дивиденда) ожидаемая доходность всего пакета 100 акций составила бы:
r= (3000 руб. - 2500 руб.)/2500 руб. = 0,2 или 20%
Если же он приобретет акции с маржей, то его расходы на покупку акций составят 1250 рублей (так как требуемая маржа rm = 0,5). За счет увеличения стоимости акций его активы возрастут на величину:
(3000 руб.-2500 руб.) = 500 рублей.
Одновременно в конце года инвестор должен вернуть брокеру процент на взятый кредит в размере: 0,11?1250=137,5 рублей (брокер брал кредит в банке под 10% плюс 1%). Отсюда ожидаемая доходность составит:
г=[500 - 137,5]/1250 = 0,29 или 29%.
Таким образом, за счет использования маржи инвестор увеличил доходность с 20% до 29%.
А что произойдет, если в течение года цена акций не возрастет, а снизится, положим, до 20 рублей. Если бы 100 акций "Салюта" покупались без маржи, то норма потерь в этом случае составила бы:
г = [(2000 руб, - 2500 руб,)]/2500 = -0,2 или -20%
А в случае покупки акций с маржей норма потерь равна:
Как видим норма потерь в случае покупки с маржой значительно выше. Следовательно, покупка ценных бумаг с использованием маржи является рискованным инвестированием. Такого рода покупки делаются только в надежде на значительный подъем курса акций в скором времени после покупки акций.
1.6Короткаяпродажаценныхбумаг
В общем смысле, под короткой продажей понимают продажу по поручению инвестора (положим, инвестора А) ценных бумаг, не принадлежащих в момент продажи инвестору А, В чем смысл короткой продажи? Обычное правило биржевой торговли можно сформулировать так: "Покупай дешевле, продавай дороже". Именно на повышение цен рассчитывают инвесторы, приобретая те или иные ценные бумаги (как уже отмечалось, если инвестор покупает ценную бумагу, то считается, что он занял длинную позицию). В случае короткой продажи это правило изменяется и принимает вид: "Продавая дороже, покупай дешевле". Представим, что инвестор А приходит к выводу, что акции "Салюта" переоценены и в скором времени начнут падать в цене. Он дает брокеру поручение совершить короткую продажу 100 акций "Салюта" по действующей цене Рс = 2.5 рублей. Брокер занимает для инвестора А эти акции из числа тех, которые хранятся в брокерской фирме (например, акции инвестора В), и продает. Инвестор же обязан вернуть долг по завершении всей операции не деньгами, а акциями “Салюта”.
Представим, что предвидение инвестора А сбылось, и цена акций "Салюта" снизилась до 20 рублей. Он дает поручение брокеру купить 100 акций и рассчитывается со своим долгом. Что же он получил от короткой продажи? Реализация 100 акций по цене 25 рублей принесла ему доход в размере:
25 руб.?100=2500 рублей, а покупка - расходы в сумме: 20 руб, ? 100=2000 рублей. В итоге, за счет короткой продажи 100 акций фирмы "Салют" инвестор: А заработал 500 рублей,
Механизм сделки. Пусть у брокерской фирмы "Вега" имеются клиенты А и В. Инвестор В имеет 100 акций фирмы "Салют" и согласно заключенному с "Вегой" договору разрешает коротко продавать принадлежащие ему ценные бумаги. Предположим, что инвестор А делает поручение коротко продать 100 акций "Салюта". В этом случае брокер занимает 100 акций у инвестора В и продает их через организатора торговли некоему инвестору С. Если через некоторое время инвестор А закроет короткую позицию, то брокер купит на бирже акции "Салюта" по рыночной цене и вернет их инвестору В.
Основные правила короткойпродажи устанавливаются законодательно (в России пока эта процедура в нормативных документах не закреплена). Обычно подобные правила сводятся к следующим:
- нельзя коротко продавать ценные бумаги, курс которых снижается. Это делается для того, чтобы не спровоцировать обвального падения их цен, В США коротко продать можно только те ценные бумаги, котировки которых в ходе ближайших двух торговых сессий (вчера и позавчера) повышались или оставались неизменными. Кроме того, как указывалось ранее, нельзя в течение определенного периода, коротко продавать ценные бумаги нового выпуска;
- время короткой продажи не ограничивается;
- если за время короткой продажи инвестор В сделает поручение продать принадлежащие ему 100 акций "Салюта", то брокер сначала должен попытаться сделать это за счет других клиентов, также разрешивших коротко, продавать их акции. Если это не удается, то он обязывает инвестора А вернуть инвестору В акции "Салюта". "Поскольку в этот момент акции "Салюта" могут возрасти в цене, то инвестор А понесет потери. Если инвестор А откажется возвращать акции инвесторов, то это сделает брокер, но за счет средств инвестора А. Это обстоятельство определяет повышенный уровень риска коротких продаж;
- по правилам коротких продаж инвестор Л не должен знать, чьи акции коротко проданы; инвестор. В не должен знать, что его акции коротко про даны; наконец, инвестор С не должен знать, что он приобретает акции при короткой продаже. Делается это для того, чтобы избежать ажиотажа и резкого падения цены акций "Салюта";
- если за время короткой продажи по акциям "Салюта'" будут начислены дивиденды, то их получит инвестор С - новый владелец акций. Инвестору же В дивиденды выплатит брокерская фирма, но за счет средств инвестора А;
- если в период короткой продажи инвестор В решит воспользоваться правом голоса (ведь он владел 100 голосующими акциями "Салюта"), то теоретически брокер может попытаться сделать это за счет иных клиентов -владельцев акций "Салюта", не желающих участвовать в общем собрании "Салюта". Если этого не удается, а инвестор В настаивает на своем праве, то брокер сообщает ему о короткой продаже акций.
Первоначальная требуемая маржа, фактическая и поддерживаемая маржа. Пусть инвестор А делает поручение коротко продать 100 акций фирмы "Салют" по цене 25 рублей за акцию. Поскольку короткая продажа связана с заимствованием акций, то существует риск того, что инвестор А не вернет их (например, разорится и не будет иметь средств выкупить акции). Если это произойдет, то возвращать акции инвестору В вынуждена будет брокерская фирма . Чтобы обезопасить себя частично от подобных потерь, "Вега" не выдает инвестору А на руки выручку 2500 рублей, полученную от короткой продажи 100 акций "Салюта" по цене 25 рублей. Но, к сожалению, этих денег может не хватить для покрытия потерь брокерской фирмы.
Представим, например, что вопреки ожиданиям инвестора А, цены акций "Салюта" стали подниматься и достигли 30 рублей. В этих условиях для покрытия долга и покупки 100 акций "Салюта" понадобится уже 30?100=3000 рублей, то есть выручки 2500 рублей от короткой продажи акций не хватит для расчета с долгом. В этой связи выходом может быть установление первоначальной требуемой маржи rm сверх полученной выручки от короткой продажи. Обычно rm для коротких продаж равна rm для покупок с маржой. Положим, что требуемая маржа составляет 0,5 или 50%. Тогда в момент совершения короткой продажи балансовый отчет инвестора имеет вид:
Активы
Пассивы
Выручка от продажи акций:
100 акций по 25 рублей =
=100?25 = 2500 руб.
Требуемая маржа =1250 руб.
Всего: =3750 руб.
Долг =2500 рублей
Собственные средства =
= 1250 рублей.
Финансовое состояние инвестора А брокер также определяет с помощью фактической маржи am, которая в данном случае высчитывается следующим образом:
Cобственные средства
Фактическая маржа am=77
=
Сумма долгов
Рыночная стоимость активов - сумма долгов
=
Сумма долгов
Если в нашем примере обозначить:
n - количество коротко-проданных акций;
Рs - цену, по которой акции были коротко проданы;
rm - требуемую маржу;
Рc - действующую рыночную цену акций, то формулу для. подсчета фактической маржи можно представить в виде:
Очевидно, что и требуемая маржа не является для брокера гарантией от потерь. Поэтому при коротких продажах также устанавливается минимальный уровень фактической маржи - поддерживаемая маржа mm, ниже которой am не может опускаться. Брокер ежедневно приводит счет инвестора А в соответствие с рыночной ситуацией и высчитывает фактическую маржу. Если она опускается ниже поддерживаемой, то брокер направляет инвестору маржинальное требование с просьбой привести счет в соответствие с поддерживаемой маржoй.
Предположим, что поддерживаемая маржа mm=0,25, и в примере с инвестором А рыночная цена акций фирмы "Салют" возросла до 31,25 рублей. Балансовый отчет инвестора А будет иметь вид:
Активы
Пассивы
Выручка от продажи акций:
100 акций по 25 рублей =
100?25 =2500руб.
Требуемая маржа = 1250 руб.
Всего =3750
Долг = 100 акций по 31,25 руб. =
=3125 руб.
Собственные средства =
=625 рублей
В этом случае фактическая маржа равна: .
am = (625 рублей)/(3125 рублей) =0,2
что ниже поддерживаемой маржи. Следовательно, инвестор А получит маржинальное требование и обязан предпринять шаги по увеличению фактической маржи. Сделать это он может, внеся на счет такую дополнительную сумму, чтобы после этого фактическая маржа am стала равной по крайней мере поддерживаемой марже mm. В данном случае инвестор должен внести 156,25 рублей. Тогда:
am = (3750+156,25-3125 )/3125=781,25/3125=0,25
Когда фактическая маржа выше поддерживаемой (0,25), но ниже первоначальной (0,5), то операции по счету инвестора А ограничиваются, и ему не разрешается использовать, его таким образом, чтобы это приводило к уменьшению фактической маржи (например, покупать ценные бумаги),
Но инвестор А играет на понижение, надеясь, что после короткой продажи цена акций "Салюта" понизится. Представим, что его ожидания оправдались, и цена акции упала до 20 рублей. Тогда баланс инвестора А примет вид:
Активы
Пассивы
Выручка от продажи акций:
100 акций по 25 рублей =
=100?25 = 2500 руб.
Требуемая маржа = 1250 руб.
Всего: = 3750 руб.
Долг =2000 рублей
Собственные средства =1750 рублей
и фактическая маржа: am = (3750 - 2000)/2000=0,875, что, значительно превышает требуемую маржу rm. В этом случае у инвестора имеются две альтернативы:
- снять со счета столько денег, чтобы после этого фактическая маржа сократилась до уровня не ниже 0,5 - требуемого уровня. Поскольку при короткой продаже инвестор по сути кредитует себя сам (внося первоначальную маржу rm), то брокер проводит снятие денег за счет уменьшения активов инвестора. Сумма долга при этом не меняется, а собственные средства (следовательно, и фактическая маржа) уменьшаются. В данном случае инвестор А может снять со счета 750 рублей;
- закрыть короткую позицию, то есть купить подешевевшие акции и вернуть долг инвестору В. В таком случае инвестор имеет возможность получить высокую доходность. Представим, что в тот момент, когда инвестор А находился в короткой позиции, фирма "Салют" выплатила в качестве дивиденда 0,5 рубля на каждую акцию. Данную сумму инвестор обязан компенсировать брокерской фирме "Вега". Кроме того, на каждую акцию инвестор А внес сумму, определяемую требуемой маржей 0,5?25 руб.= 12,5 рублей, и за счет снижения цены акции получил с каждой акции выручку 5 руб. = 25 руб. - 20 руб. Отсюда доходность:
r = (5руб.-0,5руб.)/0,5?25руб,= 4,5/12,5=0,36 или 36%
Итак, использование коротких продаж очень выгодно для инвестора, если он правильно предугадал движение рынка. Но короткая продажа являются очень рисковой инвестицией и не каждый инвестор решается на нее (в США доля коротких продаж составляет 10-12% от общего объема продаж на рынках).
Контрольныевопросы
1. Каково место рынка ценных бумаг в структуре финансового рынка?
2. Каковы перспективы развития рынка ценных бумаг в России?
3. В чем состоят основные проблемы российского рынка ценных бумаг?
4. Какие функции выполняет рынок ценных бумаг?
5. Как классифицируются риски на рынке ценных бумаг?
6. Какова структура рынка ценных бумаг?
7. По каким критериям классифицируются элементы?
8. Как различаются инвесторы по целям? По тактике действий?
9. В чем разница деятельности брокера в качестве комиссионера и поверенного?
10. Какие требования предъявляются к минимальному размеру уставного капитала брокерской и дилерской компаний?
11. Каковы основные функции и характеристики инвестиционной компании?
12. В чем состоят особенности деятельности фондов?
Глава 2. Финансовыеинструменты,используемыенарынкеценныхбумаг
2.1.Доходностьценныхбумаг.
При анализе процесса вложения денег в ценные бумаги два понятия играют ключевую роль - отдача денных бумаг и риск подобных инвестиций.
Отдача ценной бумаги - это прирост денежных средств инвестора за время владения ценной бумагой (за холдинговый период). Если инвестор купил ценную бумагу за начальную сумму 100 рублей и по прошествии холдингового периода получил конечную сумму 108 рублей, то можно сказать, что отдача ценной бумаги в этом случае (то есть увеличение денежных средств) составляет 8 рублей.
Суммы, направляемые на приобретение ценных бумаг, и отдача этих ценных бумаг отличаются друг от друга. Поэтому сравнение абсолютных величин затрат на ценные бумаги и их отдачи может привести к неверному инвестиционному решению. Действительно, пусть инвестор имеет возможность приобрести две ценные бумаги - одну стоимостью 150 рублей и другую за 180 рублей. По окончании холдингового периода первая ценная бумага обеспечивает конечную сумму денег 165 рублей, а вторая - 196 рублей, то есть отдача первой ценной бумаги составляет 15 рублей, а второй -16 рублей. Какая ценная бумага предпочтительней? Казалось бы, вторая дает более высокую отдачу (16 рублей по сравнению с 15 рублями), но житейский опыт подсказывает, что 16 рублей, полученных на 180 рублей затрат, менее выгодны, чем 15 рублей, но на 150 рублей первоначальных затрат.
В этой связи целесообразно оперировать не абсолютными, а относительными величинами и ввести понятие доходности (доходности) ценной бумаги за холдинговый период:
(конечная сумма денег) - (начальная сумма денег)
Доходность r= (2.1)
начальная сумма денег
В приведенном примере в первом случае доходность r=(165-150)/150=0,1. Очень часто доходность исчисляют в процентных величинах, чтобы это сделать необходимо полученную по формуле (2.1.) величину r умножить на 100%. Следовательно, доходность первой ценной бумаги r=0,1?100%=10%. Для второй ценной бумаги r=(196-180)/180=0,89 или 8,9%. Отсюда видно, что первая ценная бумага предпочтительней.
При вычислении доходности надо, иметь в виду, что отдельные ценные бумаги обеспечивают увеличение денежных средств за холдинговый период не только за счет повышения их стоимости, но и путем периодической выплаты денежных сумм (например, дивиденда по акции, процентных выплат по облигации). Если за холдинговый период ценная бумага может обеспечивать дополнительный доход в сумме D рублей, то в общем случае доходность ценой бумаги за холдинговый период подсчитывается по формуле:
(2.2.)
где Рк - цена продажи (в конце холдингового периода);
Рн - цена покупки (в начале холдингового периода);
D - денежные суммы по ценной бумаге за холдинговый период;
Например, инвестор купил акцию за 20 рублей, и по прошествии холдингового периода ее цена возросла до 21 рублей, а годовой дивиденд составил 1 рубль. Тогда доходность этой акции;
r = (21-20+1)/20=0,1 или 10%.
Из формулы (2.2) следует, что при уменьшении величины Рн доходность ценной бумаги r за холдинговый период будет возрастать. Поскольку значения Рн обычно отражают текущие рыночные величины цен финансовых средств, а Рк - прогнозируемые значения цен в конце холдингового периода, то это позволяет сделать важный вывод: падение котировок ценных бумаг приводит к росту их доходности.
Если инвестор вложил в ценную бумагу с доходностью r начальную сумму Sн, то по прошествии холдингового периода он получит от этой денной бумаги конечную сумму Sк:
Sk =Sн?(1+r) (2.3.)
При этом необходимо учитывать, что при использовании формулы (2.3) величины доходности r должны быть выражены в виде десятичной дроби.
В общем случае на доходность ценной бумаги оказывают воздействие три фактора:
- временной;
- фактор инфляции;
- фактор риска;
Воздействие временного фактора свидетельствует о том, что когда инвестор приобретает долговую ценную бумагу, предоставляя деньги в долг заемщику, то он отказывается от возможности потратить свои средства на потребление в текущий момент ради получения более высокого дохода в будущем. С другой стороны, заемщик (чье текущее потребление превосходит его текущий доход и который прибегает к заимствованию денег) должен в будущем вернуть сумму денег, превосходящую занятую (иначе он не сможет побудить инвестора пойти на определенную жертву и отложить потребление на более поздний срок). Иными словами, заемщик обязан компенсировать инвестору задержку в текущем потреблении вне зависимости от воздействия инфляции и риска, то есть оплатить воздействие только фактора времени.
Влияние временного фактора позволяет оценить безрисковая реальная ставка процента Rf, реальн (реальными называются величины, свободные от инфляционной составляющей и измеренные в базовых величинах). В противоположность реальным, номинальные величины содержат внутри себя инфляционную составляющую. Следует учитывать, что наблюдаемые на рынке текущие значения процентных ставок и цен всегда являются номинальными. Тот факт, что Rf, реальн является безрисковой означает отсутствие у инвестора какой-либо неопределенности по поводу соотношения текущего и будущего потребления, то есть инвестор точно знает, какое вознаграждение в виде процента должен заплатить ему заемщик. Зачастую эту ставку процента, называют чистой ставкой процента. Считается, что она отражает временную стоимость денег.
Два фактора влияют на величину Rf, реальн - субъективный и объективный. Субъективный фактор предполагает оценку самим инвестором стоимости откладывания его текущего потребления ради будущего дохода, что определяет требуемое инвестором вознаграждение , ставку компенсации за задержку в потреблении. Эта ставка различна для каждого инвестора, однако под воздействием спроса и предложения на рынке ссудного капитала устанавливается ее равновесная величина.
Объективный фактор - это инвестиционные возможности экономики страны в текущий момент. Они зависят от долговременного реального уровня развития экономики: изменения в темпах развития экономики воздействуют на все инвестиционные проекты и влекут перемены в требуемой доходности всех инвестиций. Реальный уровень развития экономики связан, с долговременными темпами прироста рабочей силы и ростом производительности труда. Существует положительная связь между инвестиционными возможностями экономики и безрисковой ставкой процента - повышение темпов роста экономики вызовет и увеличение Rf, реальн.
Итак, первая составляющая доходности - реальная безрисковая ставка процента компенсирует инвестору задержку в потреблении (временной фактор).
Оценка фактора инфляции. Приведенная выше безрисковая ставка определена при условии неизменности общего уровня цен (отсутствия инфляции) за холдинговый период, то есть является реальной ставкой. Между тем, если инвестор ожидает рост общего уровня цен, то требуемая им номинальная безрисковая ставка должна компенсировать и будущие потери из-за инфляции. Значит, вторая составляющая требуемой доходности учитывает фактор инфляции.
Представим, что суммарное воздействие субъективных оценок всех инвесторов и объективного фактора определило величину реальной безрисковой ставки Rf, реальн,а планируемый уровень инфляции за холдинговый период 1%. Если начальная величина инвестиций Sн, то по прошествии холдингового периода инвестор потребует у заемщика сумму Sк, равную:
Sк= Sн?(1+Rf, реальн)?(1+i)
что и определяет требуемую компенсацию инвестору с учетом инфляции, то есть:
Отсюда можно найти выражения как для реальной, так и номинальной безрисковой ставки:
Rf, номинальн.=(1+ Rf, реальн )?(1+i) - 1
Итак, вторая составляющая доходности компенсирует инвестору ожидаемый рост общего уровня цен (фактор инфляции).
Оценка фактор риска. Вкладывай деньги в ту или иную ценную бумагу, инвестор может лишь с определенной долей уверенности прогнозировать ее будущую отдачу. Инвестор понимает, что ожидаемая им отдача иной бумаги может существенно отличаться от фактической отдачи, которая будет наблюдаться по прошествии холдингового периода - он приобретал акции в надежде на быстрый рост их цены, а на самом деле цена акций понизилась. Отсутствие у инвестора 100%-ой гарантии получения актируемого дохода от инвестиций и составляет основу риска ценных бумаг. Значит, в общем случае отдача ценной бумаги является случайной величиной и для ее исследования необходимо использовать аппарат теории вероятности и математической статистики.
Если инвесторы считают, что риск инвестирования в ценную бумагу им компенсирует надбавка за риск Rриск, то тогда искомая номинальная рисковая (она же и текущая рыночная) величина доходности ценной бумаги Rриск номинальн будет равняться.
Rриск номинальн = Rf, номинальн + Rриск
Следует иметь в виду, что любая процентная ставка (а не только доходность конкретной ценной бумаги) содержит упомянутые три составляющие
Из всего многообразия ценных бумаг, акции являются наиболее распространенными. Отсюда понятен интерес и обычных .инвесторов, и профессиональных менеджеров, и ученых - экономистов к принципам оценки акций. Следует сразу отметить, что на этом пути встречаются значительные, порой трудно преодолимые препятствия, поэтому зачастую теории оценки акций строятся на существенных упрощениях.
Специфика акций состоит в том, что для них можно ввести несколько категорий стоимостей: рыночную, экономическую, номинальную, балансовую, эмиссионную, ликвидационную. .
Рыночная стоимость определяется в каждый текущий момент действующей рыночной ценой акции. Если эту цену умножить на количество находящихся в обращении обыкновенных акций, то получится рыночная стоимость собственных средств (капитализация) корпорации. Например, если на 17.03.2002г. в обращении находилось 120 млн. акций компании "Салют" стоимостью 20 руб. каждая, то на этот день капитализация "Салюта" оставила 2,4 млрд. руб.. Это означает, что участники рынка в целом готовы заплатить сумму, не меньшую 2,4 млрд. руб. за те средства (реальные, материальные и финансовые), которыми располагает корпорация.
Оценить рыночную стоимость, собственных средств частной компании, либо закрытого акционерного общества, акции которого не имеют обращения на фондовых рынках, можно только в случае ликвидации этих фирм, так как в подобном случае станет известно, какую сумму участники рынка готовы заплатить за средства подобных компаний.
Экономическая стоимость акции представляет собой приведенную стоимость тех потоков денег, которые в данный момент инвестор ожидает получить от акции в будущем. Иными словами - это дисконтированная стоимость будущего потока дивидендов и цены- акции в момент ее продажи (акция обеспечивает только эти два вида денежных потоков). Следует учитывать, что инвестиционное решение инвестор должен принимать на основе оценки экономической и рыночной стоимостей акции: если рыночная цена акции выше ее экономической стоимости, то акция переоценена и в скором времени надо ожидать снижение ее цены. В таких условиях, инвестору целесообразно ликвидировать (продать) или коротко продать акцию, Если же рыночная цена акции ниже ее экономической стоимости, то она недооценена, поэтому надо покупать подобную акцию и занимать длинную позицию.
Номинальная стоимостьРномин- это та официальная цена акции, которая устанавливается создателями акционерного общества в момент утверждения его устава; это доля уставного капитала, приходящаяся на одну акцию. Номинальная стоимость определяет минимальную стоимость акции, которая не может снижена путем выплаты дивидендов, это тот минимум, который могут получить владельцы акций в случае ликвидации акционерного общества. В этой связи номинальная стоимость акций устанавливается обычно очень низкой. Если умножить величину номинальной стоимости обыкновенной акции. Рномин на количество находящихся в обращении акций данного эмитента (положим "Салюта") N, то получим величину уставном капитала "Салюта" =N ?Рномин .
Когда происходит первичное размещение дополнительных акций, то устанавливаемая цена размещения (эмиссионная стоимость)Р размещ практически всегда превышает номинальную стоимость. Если было размещено дополнительно М акций "Салюта" по цене Р размещ , то собственные средства "Салюта" возрастут на величину: М ? Р размещ При этим сумма М ? Рноминалдобавится к уставному капиталу, а М ?( Р размещ - Р номинал ) войдет во вторую часть собственных средств "Салюта" - добавочный капитал.
Наконец, по результатам года "Салют" может иметь чистую прибыль. Часть этой прибыли выплачивается акционерам в виде дивиденда, а оставшаяся часть - нераспределенная прибыль - реинвестируется. Накопленные суммы нераспределенной прибыли учитываются нарастающим итогом. Общая сумма уставного капитала, добавочного капитала и нераспределенной прибыли составляет собственные средства акционерного общества и учитываются в разделе "капитал плюс резервы" пассива баланса.
Балансовая стоимость акции представляет собой величину, полученную делением суммы собственных средств фирмы на количество обыкновенных акций.
Поскольку суммы статьи "капитал и резервы" идут на закупку средств, указанных в левой половине баланса, то балансовую стоимость акций можно соотносить с балансовой стоимостью оборотных и основных средств, а также нематериальных активов с учетом амортизации. Для текущих средств (наличность, дебиторская задолженность) балансовая стоимость акции довольно близко совпадает с ее экономической стоимостью. Однако для реальных средств (станки, здания, оборудование), которые изнашиваются в процессе эксплуатации, балансовая стоимость обычно мало связана с экономической. В этой связи для большинства промышленных компаний балансовая стоимость акции ниже ее рыночной цены и не может служить хорошим ориентиром для построения теории оценки акций.
2.2 Моделиоценкиакций
С точки зрения постановки проблемы, задача, правильной, оценки акции проста - цена акции должна равняться ее экономической стоимости, которая, в свою очередь, определяется приведенной стоимостью всех денежных потоков, обеспечиваемых акцией. Акция предоставляет инвестору денежные доходы двух типов - дивиденды, выплачиваемые регулярно по результатам работы компании, и суммы денег, равные цене акции в момент ее продажи (ликвидации). Значит, чтобы найти рыночную цену акции в любой момент времени, необходимо дисконтировать поток дивидендов и ликвидационную сумму на интересующий нас момент времени. Существуют три теоретические модели оценки акций - дисконтирования потока дивидендов, дисконтирования потока доходов и дисконтирования потока денег. Если используемые в этих моделях переменные величины подобраны правильным способом, то все модели дадут один и тот же результат. Наиболее часто используется модель дисконтирования дивидендов.
Модель дисконтирования дивидендов. Представим, что в исходный момент времени t=0 цена акции составляла Рo руб.. По прошествии холдингового периода цена акции возросла до Р1 руб. и владельцу акции выплачивается дивиденд в размере D1 руб.. Тогда доходность к акции за холдинговый период:
(2.4.)
Эту формулу можно преобразовать и найти величину Ро:
(2.5.)
Доходность к, которая в формуле (2.5) служит ставкой дисконта для вычисления приведенной стоимости акции, называется рыночной ставкойкапитализации. В условиях эффективного рынка ставка капитализации отражает издержки упущенной возможности размещения денег в акцию.
Строго говоря, формула дисконтирования позволяет утверждать, что приведенная стоимость акции РV (что и определяет цену акции в исходный момент времени) может быть представлена в виде:
(2.6.)
где: - D 1,D2, D3, …, Dn - денежные потоки в момент 1,2,...,n;
- k 1, k2, k3, …, kn - рыночные ставки капитализации в момент 1,2,...,n
- n - количество лет, в течение которых инвестор предполагает владеть акцией.
Формула (2.6) предполагает, что инвестор должен задать прогнозируемые величины денежных потоков Di и ставок дисконта ki на "n" лет перед, что делает задачу вычисления. Р0 практически невыполнимой. По этому для построения приемлемой математической модели необходимо пойти на ряд существенных допущений и упрощений:
1).Будем считать, что к1=к2=...=к. Иными словами, в любой момент инвесторы всегда одинаково оценивают риск, связанный с данной акцией. Эго допущение не столь жесткое, поскольку аналогичное делается и при оценке, например, реальных средств.
2) Предполагается, что любая величина D t =Dt-1?(1+g1), где g1 -ставка прироста ежегодных выплат в год t, Dt - сумма, выплачиваемая в год t, Dt-1 -сумма, выплачиваемая по акции годом раньше.
Наиболее простая модель оценки стоимости акции предложена американским экономистом Майроном Гордоном (Муrоn J, Gоrdon) в 1962 году. Для ее построения. Гордон пошел на другие у прощения:
во-первых, поскольку, срок действия акции теоретически не ограничен, то считаем, что поток денежных выплат представляет собой бесконечный поток дивидендов (ликвидационной суммы уже не будет, так как акция существует бесконечно долго). Иными словами, с учетом уже сделанных упрощений, формулу (2.6.) можно представить так:
-во-вторых, Гордон предложил считать все величины gi равными друг другу, то есть дивиденды возрастают ежегодно в (1+g) раз, причем ветчина g не меняется до бесконечности. Иными словами, в модели Гордона:
D2 = D1?(1+g)
D3 = D2?(1+g)= D1?(1+g)2
D4 = D3?(1+g) = D2?(1+g)2=D1?(1+g)3 и т.д.
С учетом этого допущения, формула (6.7) примет вид:
(2.8.)
Если же считать, что дивиденд D1 = D0?(1+g), где D0 - дивиденд, выплачиваемый годом раньше, то формула (2.8) может быть записана так:
(2.9)
Выражение (2.9) представляет собой бесконечно убывающую геометрическую прогрессию. Сумма членов такой прогрессии:
(2.10)
Итак, согласно модели Гордона, приведенная стоимость акции Ро определяется делением величины ожидаемого по результатам текущего года дивиденда D1 на разность между рыночной ставкой капитализации k и ожидаемой ставкой прироста дивиденда g.
Чтобы на практике применить модель Гордона, необходимо задать три величины: D1, k, и g. Наиболее простым способом при этом является использование уже реализованных данных (например, по суммам дивидендов за предыдущие годы можно вычислить g, зная D0, найти D1 = D0?(1+g), либо ссылка на прогнозы аналитических служб. Сложнее оценить величину k, так как для этого необходимо определить способ нахождения цены акции. Оценив величины D1, k,и g , инвестор в состоянии по формуле (2.10) вычислить приведенную стоимость акции, то есть ее ожидаемую цену, сравнить ее с действующей рыночной ценой и сделать вывод о той, правильно ли оценена акция: если вычисленная по формуле (2.10) экономическая стоимость акции Ро ниже действующей рыночной цены акций, то акция переоценена. В подобной ситуации инвестору целесообразно продать такие акции, если он их имеет, или продать их коротко, "заняв" в брокерской конторе, так как в скором времени цена акции может понизиться. Когда же Ро выше действующей рыночной цены, то инвестору надо приобретать подобные акции и ожидать повышения их цены, после чего продать и получить ценовой выигрыш.
Модель Гордона дает возможность быстрой оценки текущей стоимости акций, однако прежде чем применять ее и на этой основе делать инвестиционное решение, необходимо иметь в виду следующие обстоятельства:
- поскольку модель предполагает дисконтирование поступающих дивидендов вплоть до бесконечности, то формула (2.10) очень чувствительна даже к небольшим изменениям исходных данных.
- к должно быть всегда выше g, поскольку в противном случае цена акции становится неопределенной. Это требование вполне логично, так как величина g(темпа прироста дивидендов) может в какой-то момент превысить требуемую доходность акции k, но этого не может произойти, если полагать бесконечным выбранный срок дисконтирования, ибо в этом случае постоянно дивиденды прирастали с более высокими темпами, чем доходность акции, что не может быть;
- фирма должна выплачивать дивиденды регулярно. Если этого не произойдет, модель Гордона неприменима. Более того, требование неизменности величины gозначает, что фирма направляет на выплату дивидендов всегда одну и ту же долю своего дохода;
- требование неизменности величин к и g вплоть до бесконечности ограничивает структуру капитала фирмы: необходимо предполагать, что единственным источником финансирования фирмы являются ее собственные средства и отсутствуют иные внешние источники. Новый капитал поступает на фирму только за счет удерживаемой доли дохода, и чем выше доля дивидендов в доходе фирмы, тем ниже уровень обновления капитала.
Конечно, весь набор ограничений в модели Гордона нереален, но он необходим для создания математической модели.
Взаимосвязь факторов, воздействующих на стоимость акции. Обратимся к формуле (2. 10):
(2.10)
и выразим отсюда:
Первое слагаемое D1/Ро называют дивидендной доходностью и ее оценка не вызывает особой сложности. Труднее обстоит с величиной g. Для ее оценки можно применить следующий способ: пусть в течение года акция принесла прибыль на акцию E1. Выплачиваемые дивиденды определяются долей выплат р: D1=p?E1. Например, если фирма выплачивает в виде дивиденда 40% полученных за год доходов на акцию, то р=0,4 и D1=0,4?Е1. Остальная часть идет на реинвестирование, то есть направляется фирмой на закупку нового или обновление старого оборудования. Эта часть определяется долей возврата b. Значит, р=(1-b) и D1=(1-b)?Е1=0,4?Е1. Если предполагать, что фирма использует только собственные средства, то доходность реинвестированных доходов равняется отношению прибыли на акцию Е1 к балансовой стоимости акции; доходность называют доходностью капитала (return on equity -ROE):
ЧистаяприбыльнаакциюЕ1
ROE =
Балансоваястоимостьакции
Можно доказать, что величина g= b?ROE. Если подставить полученные выражения для D1 и g в формулу (2.10), то получим:
Эта формула связывает между собой две доходности: k - ставку капитализации, определяющую издержки упущенной возможности приобретения акции, то есть доходность наилучшего альтернативного средства такого же уровня риска, и RОЕ - доходность капитала. Взаимодействие этих двух величин с учетом дивидендной политики фирмы (что определяется величиной b) воздействуют на текущую стоимость акции, и все акции условно можно разбить на три группы: акции "нормальных" компаний, акции "растущих фирм", акции "угасающих" фирм".
Нормальные фирмы характеризуются тем, что для них k=ROE. Значит, нормальная фирма и ее конкуренты выбрали возможности инвестировать собственные средства в проекты с NPV>0 и вынуждены вкладывать деньги в инвестиции с NPV=0. Поэтому RОЕ каждой фирмы уравниваются и приближаются к рыночной ставке капитализации k. Подставим выражение k=ROE в формулу (2.12) и получим:
Эта формула позволяет сделать два вывода: во-первых, ставка дисконта k может быть выражена через соотношение Ро/Е1 только в том случае, если k=ROE (замечание важное, поскольку величина Р/Е является одной из важных качественных характеристик акций, приводящихся в таблицах котировки акций. Попытка использовать величину, обратную отношению Р/Е, в качестве ставки дисконта в формуле Гордона может дать результат, далекий от истины, если k=ROE). Во-вторых, если фирма "нормальная", то инвесторам абсолютно безразлична ее дивидендная политика - они получают одинаковую отдачу от акции вне зависимости от соотношения дивидендов и ценового выигрыша.
Для растущей фирмы RОЕ>k, то есть эта фирма имеет возможность инвестировать собственные средства в такие проекты, для которых NPV>0). Иными словами, подобные фирмы имеют возможность приобретать капитальные ресурсы с издержками k процентов и получать от их эксплуатации доходность RОЕ, превышающую k.
Наконец, для угасающей фирмы RОЕ<k - она не в состоянии реинвестировать деньги в проекты с NPV>0, Подобные фирмы переживают значительное сокращение производства и как правило получают отдачу за счет более высокой доли дивиденда.
Итак, в дополнение к ставке gприроста дивидендов, на стоимость акции оказывают воздействие, еще две величины - доля возврата b, показывающая долю прибыли фирмы, идущую на реинвестирование, и RОЕ - доходность этих реинвестированных сумм. Как установлено, темп прироста g дивидендов (а, следовательно, и прибыли фирмы) равен: g=b?ROE, то есть темпы роста прибыли компании связаны прямой зависимостью с величинами и b, и ROЕ. Обратимся к равенству (2.12):
(2.12)
Как видно, воздействие RОЕ на цену акции можно оценить однозначно, поскольку эта величина входит только в знаменатель: при прочих равных условиях, то есть при неизменных величинах E1, b и k, чем выше доходность собственных средств фирмы RОЕ, тем выше приведенная стоимость акции. Воздействие же b, поскольку данная величина входит и в числитель, и в знаменатель, нельзя выразить однозначно, ибо это будет зависеть и от соотношения значений k и RОЕ:
Модель Гордона утверждает, что если источником финансирования фирмы служат только ее собственные средства без привлечений средств со стороны, то дивидендная политика фирмы оказывает воздействие на ее цену только в случае "ненормальности" фирмы - в случае "растущей" фирмы стоимость акции повышается при увеличении доли b доходов, идущей на реинвестирование; когда фирма "угасает", то повышение цены акции возможно при расширений дивидендных сумм.
2.3.Принципыоценкистоимостиоблигаций.
Существуют два основных типа облигаций: одни продаются по номинальной стоимости и обеспечивают владельцу облигации получение регулярных купонных выплат плюс получение номинала в срок погашения облигации; такие облигации называются купонными. Другие продаются по дисконтной цене ниже номинала, и выплата по ним производится один раз в день погашения облигации, когда владелец облигации получает ее полную стоимость; облигации подобного типа относят к чисто дисконтным, или бескупонным. При оценке облигаций обоих типов основное значение имеет понятие приведенной стоимости, под которой, в общем случае понимают ту сумму денег, которую инвестор должен заплатить за финансовое или реальное средство, чтобы через определенные промежутки времени это средство приносило требуемые инвестором суммы денег.
Приведенная стоимость РV облигации высчитывается по формуле:
(2.13)
где РV - приведенная стоимость облигации, равная цене Ро облигации в момент ее покупки (при t=0);
Ci- периодические купонные выплаты по облигации;
Мn - номинальная стоимость облигации;
i- ставка дисконта;
n - количество периодов, по окончании которых производятся купонные выплаты.
Как следует из формулы (2.13), для определения РV (следовательно, и текущей цены Р0) облигации, необходимо задать по меньшей мере следующие параметры:
а) величину купонных выплат Ci и номинала Мn;
б) периодичность получения купонных выплат (определяемую величиной t). Для облигаций может быть установлена любая периодичность через месяц, раз в полгода, раз в год и т.п.;
в) длительность холдингового периода облигации, зависящую от величины n
г) ставку процента i, по которой дисконтируются потоки денежных выплат. Эта ставка называется требуемой доходностью (в дальнейшем будет показано, что они определяет доходность к погашению облигации).
Приведенная стоимость РV бескупонных облигаций находится из формулы (2. 13), полагая величины купонных выплат С i =0). Отсюда:
(2.14)
Необходимо отметить, что использование формул (2.3) и (2.14) предполагает ряд условий. Во-первых, считается, что инвестор владеет облигациями вплоть до срока их погашения. Однако очень часто облигации продаются значительно раньше дня погашения; такое решение инвестора может быть продиктовано стратегией инвестиционной деятельности (например, при снижении их доходности) или желанием срочного получения денег. Во-вторых, время покупки облигаций совпадает со сроком купонной выплаты. Но на практике облигации приобретаются в любой день года, а не только в установленные дни купонных выплат. В этой связи на практике необходимо использовать более сложные вычисления. В-третьих, формулу (2.13) следует применять в случае ежегодных купонных выплат; если же эти выплаты производятся m раз в год, то в формуле (2.13) необходимо произвести следующие изменений:
1) уменьшить в m раз величины купонных выплат, то есть каждая купонная выплата станет равной Сi/m;
2) также уменьшить в m раз ставку дисконта (требуемую доходность) i;
3) увеличить в mраз количество периодов, после которых осуществляются купонные выплаты
Значит, формулу для подсчета текущей стоимости облигации, имеющей срок погашения n лет и купонные выплаты по которым производятся m раз в год, можно представить в виде:
(2.15)
Рассмотрим пример вычисления цены облигации Ро (что эквивалентно определению ее приведенной стоимости). Пусть имеется облигация, со следующими характеристиками: номинальная стоимость Мn=1000 рублей; срок погашения n=20 лет; купонная выплата - 5%, то есть C1=0,05?1000=50 рублей, производится раз в год; ставка дисконта i=7%.Подставив эти данные в формулу (2.13), получим:
Процедура нахождения стоимости облигации значительно упрощается для бескупонных облигаций. Например, предположив, что рассмотренная нами облигация является бескупонной, ее цена может быть найдена:
Приведем пример расчета цены облигации в случае многократных купонных выплат в течение года: положим m=2, то есть процент по облигации выплачивается раз в полгода. Для нашей облигации применительно к формуле (2.15) имеем: m?n=2?20=40; Сi/2=25 рублей; i/2=3,5%, значит:
Для облигаций существует строгая взаимосвязь между ценой облигации, купонной выплатой, ставкой дисконта и сроком погашения:
1) Цена облигации Ро и доходность к погашению iнаходятся в обратной зависимости - повышение (понижение), величины i приводит к падению (росту) цены Ро.
2) В любой момент времени существует строгая взаимосвязь между ценой облигации Ро, купонной выплатой Сi (выраженной в виде процента) и доходностью к погашению i;
- когда процент Сi купонной выплаты равняется i, то цена облигации Ро равняется номинальной стоимости Мn. Поскольку величины номинала Мn и процента купонной выплаты Сi задаются изначально в момент эмиссии и не меняются вплоть до погашения облигации, а доходность i и текущая цена Ро облигации могут меняться под воздействием рыночных факторов, то справедливо и обратное утверждение - всякий раз, когда цена облигации совпадает с ее номиналом доходность к погашению облигации равняется проценту купонных выплат;
- когда купонная ставка процента Сi выше величины i, текущая цена облигации превосходит ее номинальную стоимость. В этом случае владелец облигации может продать ее и получить премию по отношению к номиналу;
- в случае, когда купонная ставка Сi становится ниже доходности к погашению, то текущая цена облигации будет меньше номинала. Если у инвестора появится необходимость в этот момент продать облигацию, то считается, что он сделал это с дисконтом по отношению к номиналу. Этот дисконт представляет собой разницу между рыночной ценой облигации Ро и ее номинальной стоимостью. Например, при i=7%, Ct=5% и оставшимся сроком до погашения 15 лет, цена облигации падает до 820,8 рублей и дисконт составит 179,2 рублей. Если подобная ситуация сохранится до момента погашения, то дисконт покажет ту выгоду, которую получил инвестор за то, что не ликвидировал облигацию, купонная выплата которой Сt=5% была ниже рыночной доходности в 7%.
3) Цена облигации зависит от срока, оставшегося до ее погашения, причем эта зависимость определяется соотношением купонной ставки процента и доходности к погашению. Для наглядности этой зависимости обратимся к таблице (2.1.)
Таблица 2.1.
Зависимость цены облигации от срока, оставшегося до ее погашения, при различных величинах Сt
Сt= i = 5%
i =7%>Ct
i =3%<Ct
Годы до
погашения
PV купонных выплат
PV номинала
P0
PV купонных выплат
PV номинала
P0
PVкупонных выплат
PV номинала
P0
20
623,1
376,9
1000
529,7
258,4
788,1
743,9
553,7
1297,6
15
519,0
481,0
1000
455,4
365,4
820,8
596,9
641,9
1238,8
10
386,1
613,9
1000
351,2
508,3
859,5
426,5
744,1
1170,6
5
216,5
783,5
1000
205.0
713,0
918,0
229,0
862,6
1091,6
1
48,6
952,4
1000
46,7
934,6
981,3
48.5
970,9
1019,4
0
0
1000
1000
0
1000
1000
0
1000
1000
Как следует из таблицы, если купонная выплата Сi равняется требуемой доходности i то цена облигации вне зависимости от срока, оставшегося до погашения, всегда равна номинальной стоимости (1000 рублей в нашем случае). Если же Сt=i, то цена облигации Ро равняется номиналу только в момент ее погашения. При этом, когда облигация имеет дисконт, то есть Сt<i, то цена облигации постепенно повышается по мере приближения рока погашения; когда Сt>i, и облигация может быть продана с премией, о цена облигации медленно падает с приближением срока погашения.
Когда инвестор приобретает облигацию в день, не сoвпадающий с датой купонной выплаты, то купонный период, в течение которого произошло приобретение облигации, оказывается разорванным. Чтобы определить цену облигации в таком случае, необходимо пропорционально распределить раз- деленную купонную выплату между периодами. Для этого находят приведенную стоимость той части купонной выплаты, которая должна быть получена по облигации, и добавляют уже заработанную продавцом облигации часть купонной выплаты, поскольку при очередной купонной выплате покупатель получит полную купонную сумму, С учетом этого обстоятельства, цена облигации, приобретаемой не в день выплаты купонных сумм, определяется по формуле:
где: - f- коэффициент, подсчитываемый следующим образом:
число дней между датой покупки и следующей купонной выплатой
f =
число дней в разорванном купонном периоде
(При вычислении f необходимо учитывать следующие правила: во-первых, день покупки облигации не учитывается, а день купонной выплаты учитывается; во-вторых, если при расчете денежных потоков от облигации используется календарный год, то необходимо в каждом месяце брать календарное число дней. Если же год принимается равным 360 дней, то каждый месяц считается равным 30 дням);
- первое слагаемое - приведенная стоимость оставшейся части разорванной купонной суммы;
- второе слагаемое - приведенная стоимость оставшихся до погашения неразорванных купонных выплат;
- третье слагаемое - приведенная стоимость номинала;
- четвертое слагаемое - заработанная продавцом облигации часть разорванной купонной суммы, называемая накопленным купоном.
Доходность облигаций.
Существует несколько видов доходности облигаций, из которых наиболее часто применяются:
а) номинальная, или купонная доходность;
6) текущая доходность;
в) доходность к погашению,
А) Номинальная доходность (купонная ставка) показывает процентную величину суммарного ежегодного дохода, полученного от облигации в виде купонных выплат, по отношению к номинальной стоимости облигации:
ежегодный купонный доход
номинальная доходность =
номинальная стоимость облигации
Номинальная доходность позволяет оценить ту ежегодную сумму, которую получит инвестор в виде процента по облигации: если купонная ставка Сt=4%, следовательно ежегодно по облигации выплачивается в виде процента (купонной выплаты) 0,04 номинальной стоимости облигации.
Несмотря на большое значение, которое играет номинальная доходность в анализе облигаций, эта величина имеет два существенных недостатка, ограничивающие возможности ее использования. Во-первых, при вычислении номинальной доходности используется номинальная стоимость и не учитывается текущая цена облигации. В этой, связи оценка облигации только по ее номинальной доходности может дать неверный результат, Во-вторых, номинальная доходность оставляет в стороне иные, кроме купонных выплат, составляющие отдачи облигации, которые может обеспечить облигация.
Б) Текущая доходность устраняет первый недостаток номинальной доходности, так как при ее исчислении используется не номинальная, а текущая рыночная цена облигации:
Ежегодные купонные выплаты
Действующая доходность =
Текущая стоимость облигации
Текущая доходность широко используется при оценке облигаций; особенно полезна она бывает тем инвесторам, для которых имеет принципиальное значение величина ежегодного купонного дохода в расчете на один инвестированный рубль.
Но текущая доходность также не устраняет второй недостаток, оставляя в стороне иные компоненты отдачи облигаций.
В) Доходность к погашению (yield to maturity- УТМ) является наиболее часто употребляемой мерой оценки доходности облигаций, поскольку она устраняет оба недостатка, присущих номинальной и текущей доходности. Существует несколько эквивалентных определений доходности к погашению. Чтобы был более понятен смысл этих определений, рассмотрим три. облигации А,В,С, имеющие одинаковую номинальную стоимость 1000 рублей:
- облигация А (бескупонная, срок погашения 1 год), цена 930,23 рублей;
- облигация В (бескупонная, срок погашения 2 года) цена 849,46 рублей;
- облигация С (купонная, срок погашения 2 года) цена 963,70 рублей
Итак, приобретя облигацию А за 930,23 рублей, инвестор через год получит 1000 рублей; если он купит облигацию В за 849,46 рублей, то 1000 рублей он получит через 2 года; наконец, приобретение облигации С за 963,7 рублей даст инвестору процентную выплату через год в размере 60 рублей, а через два года в момент погашения он получит еще одну процентную выплату 60 рублей плюс номинал, то есть 1060 рублен.
Первое определение доходности к погашению основывается на предположении, что инвестор всегда имеет альтернативу вложить деньги, предназначенные для покупки облигации, в банк. В таком случае, под доходностью к погашению облигации следует понимать ту единственную и неизменную ставку процента (с учетом начисления сложного процента через определенные промежутки времени), которая, будучи выплачиваемой банком на инвестированную сумму, обеспечивала бы инвестору получение тех платежей, которые предусмотрены условиями выпуска облигации. Например, в случае облигации А доходность к погашению ia составляет такую процентную ставку, что размещение под нее 930,23 рублей в банке принесет через год инвестору 1000 рублей, что предусмотрено условиями эмиссии. Иными словами:
(1+ia)?930,23=1000 (2.16)
откуда: 1+ia= 1,075 и ia=0,075 или 7,5%, что и составит величину доходности к погашению первой облигации.
В случае облигации В альтернативное размещение в банке 848,46 руб. по ставке процента ib должно через год дать сумму (1+ib)?849,4б руб., а через два года с учетом сложного процента эта сумма составит: (1+ib)?(1+ib)?849,46 pублей, которая, по условиям выпуска, должна равняться 1000 рублей:
(1+ib)?(1+ib)?849,46=1000 (2.17)
Откуда (1+ib)2=1,1772, следовательно (1+ib)=1,085 и ib=0,085 или 8,5%, что равняется доходности к погашению облигации В.
Сложнее высчитать доходность к погашению облигации С Представим, что в исходный момент на счете в банке размещаются 963,7 руб. Через год эта сумма должна возрасти до (1+ic)?9бЗ,7 руб.. После этого инвестор получает в виде купонной выплаты 60 руб., и на счете у него остается [(1+ic)?963,7 - 60] руб.. Данная сумма еще через год даст инвестору на счете [(1+ic)?963,7-60]?(1+iс)]руб.. По условию эмиссии облигации, это должно составлять 1060 руб.:
[(1+ic)?963,7-60]?(1+iс) =1060 (2.18)
откуда находим ic=0,08 или 8%. Значит доходность к погашению облигации С составляет 8%.
Чтобы вывести второе определение доходности к погашению облигации обратимся к равенствам (2.16-2.18). Разделим обе части равенства (2.16) на величину (1+ia):
(2.19)
Аналогичные операции проведем с равенствами (2.17) и (2.18), только обе части равенства (2.17) разделим на величину (1+ib)2 , а равенства (2.18) на (1+ic)2:
(2.20)
(2.21)
Выражения (2.19-2.21) представляют собой формулы для вычисления приведенной стоимости облигаций. Отсюда следует второе эквивалентное определение доходности к погашению: УТМ - это такая, ставка дисконта, при которой приведенная стоимость денежных потоков, обеспечиваемых облигацией (купонные выплаты и номинал), равной рыночной цене облигации Ро на момент вычисления текущей стоимости. Подобное определение доходности к погашению эквивалентно понятию внутренней доходности(internal rate of return-IRR)инвестиций.
Наконец, вернемся к равенству (2,21) и перепишем его в виде:
963,7?(1+ic)2=60?(1+ic)+1060 (2.22)
Откуда: (1+ic)2 = [60?(1+ic)+1060]/963,7 и, следовательно:
(2.23)
В знаменателе подкоренного выражения находится величина первоначальных инвестиционных затрат Ро, или, если проводить аналогию с банковским счетом, сумма начального вклада - 963,7 руб.. Числитель же представляет собой тот суммарный доход, который инвестор может получить за два года: через год он получит 60 руб. в виде процентных выплат и может реинвестировать (положить в банк) по той же ставке процента iс. Через два года первая купонная выплата обеспечит инвестору сумму 60?(1+ic)руб. Кроме того, через два года в момент погашения облигация обеспечит еще 60 руб. второй купонной выплаты плюс 1000 руб. номинала. Итого за два года облигация может дать инвестору сумму [60?(1+ic)+1060] рублей. В таком случае из выражение (2.23) можно вывести третье альтернативное определение доходности к погашению: УТМ - это средняя геометрическая годовая доходность, которую инвестор ожидает получить от своей инвестиции в момент покупки облигации, рассчитывая держать облигацию вплоть до ее погашения.
Обратим внимание на принципиальный момент, часто ускользающий от внимания инвесторов: несмотря на то, что доходность к погашению УТМ рассматривается как средняя геометрическая доходность, в реальности УТМ - это ожидаемая (в смысле предполагаемая), или обещанная величина, которая будет обеспечиваться в долгосрочном периоде только в случае выполнения следующих условий:
1) эмитент выплачивает все купонные (процентные) суммы и номинал в соответствии с условиями, выпуска облигации;
2) инвестор сохраняет облигацию до момента ее погашения;
3) все суммы купонных выплат сразу же после их получения реинвестируются владельцем облигации по ставке процента, равной УТМ.
Из этих трех условий самым принципиальным является последнее: обеспечение заданной доходности к погашению как средней геометрической годовой доходности означает, что владелец облигации должен реинвестировать все суммы купонных выплат по ставке процента, равной этой доходности к погашению в момент приобретения облигации.
Отдача любой ценной бумаги за холдинговый период определяется по формуле:
где rt+1 - отдача финансового средства в конце холдингового периода
Рt+1 - цена финансового средства в конце холдингового периода
D - поток денег (дивиденд по акции, процент по облигации) получаемый за холдинговый период .
Рt - цена финансового средства в начале холдингового периода.
Данная формула применима для любого финансового средства и широко используется в частности в теории инвестиционного портфеля. Однако она показывает отдачу ценных бумаг, которые приносят доход один раз а холдинговый период. Между тем, многие инвесторы вкладывают деньги в такие финансовые средства, как, например, облигации, приносящие регуярные доходы несколько раз за холдинговый период. В этой связи их интересуют способы подсчета средней годовой доходности, которую можно использовать для определения отдачи инвестиций за долгосрочный период.
Такая годовая доходность должна учитывать возможность получения сложного процента, то есть реинвестирование купонных выплат. Именно этим обстоятельством мультипериодная доходность отличается от однопериодной:в мультипериодном варианте помимо двух составляющих отдачи ценной бумаги (облигации) - отдачи от номинала (или отдачи от продажи облигации раньше срока погашения) плюс доход за счет купонных выплат, появляется важная третья составляющая - отдача за счет реинвестирования полученных купонных выплат.
Следует иметь в виду, что недоучет этой последней составляющей может серьезно исказить результаты оценки средней геометрической ежегодной доходности. Во всяком случае, необходимо помнить, что обещанная (предполагаемая) мультипериодная доходность, измеренная как доходность к погашению i, однозначно предполагает реинвестирование купонных выплат по ставке процента, равной величине доходности к погашению i, чтобы заработать эту доходность (доходность). Иначе говоря, доходность к погашению - это прогнозируемая величина, и она показывает предполагаемую (ожидаемую) среднюю ежегодную доходность за холдинговый период с многократными выплатами. Реальная же средняя геометрическая ежегодная доходность подсчитывается на основании уже наблюдавшихся результатов и может совпадать с предполагаемой только при определенных условиях.
Итак, для определения мультипериодной доходности инвестор обязан учитывать третью составляющую своего потенциального дохода - сложный процент на купонные выплаты. Но столь ли существенна эта составляющая, чтобы ей нельзя было пренебречь? Проведем оценку: предположим для простоты, что инвестор приобретает облигацию со сроком погашения 30 лет по номинальной стоимости и ежегодной купонной ставкой 8%. Если облигация приобретена по номиналу, то ее доходность к погашению, а следовательно и прогнозируемая годовая средняя геометрическая доходность, равна купонной ставке и составляет 8%. Пусть в последующие 30 лет инвестор реинвестирует все полученные купонные суммы по ставке 8%. Тогда через 30 лет его суммарный доход составит:
1000х(1,08)30 = 10062,7 руб.
и реальная годовая средняя геометрическая ставка будет равна величине:
(10062,7/1000)1/30-1=0,08 или 8%.
Из чего же состоит суммарный доход инвестора? Во-первых, это выплаченная в момент погашения номинальная стоимость облигации 1000 руб. Во-вторых, за 30 лет он 30 раз получит купонные выплаты, то есть суммарные процентные выплаты равны: 30x80=2400 руб. Итого, две первые составляющие дают в общей сложности: 1000+2400 =3400 руб., а остальные 6662,7 руб. обеспечивает третья составляющая отдачи облигации - процент на процент. Значит, из общей величины полученного инвестором дохода в 10062,7 руб., сумма в 6662,7 руб., или (6662,7/10062,7)= =0,662, то есть 66,2%, составляет процент на процент. Но для получения такого дохода, а, следовательно, и предполагаемой доходности (или, что равноценно, доходности к погашению) инвестор должен реинвестировать купонные суммы по ставке процента, равной доходности к погашению.